Films courbés composés d’un matériaux non simple de second grade

Giuliano Gargiulo †, Elvira Zappale ‡, Hamdi Zorgati ‡

Abstract

Curved thin films made of non simple material of second grade. We consider a curved thin film made of a non simple second grade material. The behavior of the film is described by a non convex bulk energy depending on the second order derivatives of the deformation. When the thickness of the curved film goes to zero, we show using Γ-convergence arguments that the quasiminimizers of the three-dimensional energy converge to the minimizers of an energy whose density has been ‘A-quasiconvexified’ depending on a two-dimensional deformation and a Cosserat vector. To cite this article: G. Gargiulo, E. Zappale, H. Zorgati, C. R. Acad. Sci. Paris, Ser. I....

Résumé

Abridged English version

We consider a curved thin film made of a non simple second grade material (see [12], [13], [11], [5]) whose non convex energy depends on the second order derivatives of the deformation. The thin film occupies an open domain of the

* Dipartimento di Scienze biologiche ed ambientali, Universita’ degli Studi del Sannio, Benevento, Italia. e-mail: gargiulo@diima.unisa.it
† DIIMA, Universita` degli Studi di Salerno, via Ponte Don Melillo, 84084 Fisciano (SA), Italia. e-mail: zappale@diima.unisa.it
‡ Institut Für Mathematik, Universität Zürich, Winterthurerstr. 190 CH-8057 Zürich, Switzerland, email: hamdi.zorgati@math.unizh.ch
form
\[\tilde{\Omega}_h = \{ x \in \mathbb{R}^3, \exists \tilde{x} \in \tilde{S}, x = \tilde{x} + \eta a_3(\psi^{-1}(\tilde{x})) \text{ with } -\frac{h}{2} < \eta < \frac{h}{2} \}, \] (1)
where \(\tilde{S} \) is the curved midsurface of the film, \(a_3(\psi^{-1}(\tilde{x})) \) is the unit vector normal to \(\tilde{S} \) at the point \(\tilde{x} \), and \(h \) is the thickness of the film.

The behavior of the thin film undergoing a deformation \(\tilde{\varphi} \) is described by the bulk interfacial energy \(\tilde{e}_h \) below:
\[\tilde{e}_h(\tilde{\varphi}) = \int_{\tilde{\Omega}_h} W(\nabla^2 \tilde{\varphi})dx, \] (2)
where \(W \) is a continuous stored energy function satisfying standard growth and coercivity hypotheses and a lipschitz type continuity assumption, \(\nabla^2 \tilde{\varphi} \) is the \(3 \times 3 \times 3 \) tensor of second derivatives.

In this work, we analyze the asymptotic behavior of the total energy and its infimizers over a set of admissible deformations \(\tilde{V} \) of the form
\[\tilde{V} = \{ \tilde{\varphi} \in H^2(\tilde{\Omega}_h; \mathbb{R}^3), \tilde{\varphi}(\tilde{x}) = \tilde{x} \text{ on } \tilde{\Gamma}_h \}, \] (3)
when the thickness of the film \(h \) goes to zero, where \(\tilde{\Gamma}_h \) represents the lateral surface of \(\tilde{\Omega}_h \).

We begin the study by rescaling the energy in order to perform our analysis on a domain independent of the thickness \(h \). Then, we study the behavior of the infimizers of the energy when the thickness vanishes. We show, using \(\Gamma \)-convergence arguments (see [3]), that the infimizers of the rescaled energy converge to the minimizers of an energy depending on a two-dimensional deformation and on one Cosserat vector field.

It is worthwhile to mention that the lack of convexity in the 3D energy density in (2) leads to a 2D integrand which ensures lower semicontinuity of the limit energy, namely the 2D energy density turns out to be \(\mathcal{A} \)-quasiconvex (see [4], [2] for general lower semicontinuity and relaxation results and [11], [5] for explicit formulation of the operator \(\mathcal{A} \) in the framework of grade two materials), in agreement with the first order case considered by [8].

1 Préliminaires

On considère un film courbé mince composé d’un matériaux non simple de grade deux, d’épaisseur \(h \) occupant un domaine \(\tilde{\Omega}_h \) de la forme
\[\tilde{\Omega}_h = \{ x \in \mathbb{R}^3, \exists \tilde{x} \in \tilde{S}, x = \tilde{x} + \eta a_3(\psi^{-1}(\tilde{x})) \text{ avec } -\frac{h}{2} < \eta < \frac{h}{2} \}, \] (4)
où \(\tilde{S} \) est la surface moyenne de \(\tilde{\Omega}_h \), une sous-variété bidimensionnelle de classe \(C^3 \) de \(\mathbb{R}^3 \) admettant un atlas comportant une seule carte \(\psi \). Cette carte est un \(C^3 \)-difféomorphisme. Elle envoit un ouvert borné \(\omega \) inclus dans \(\mathbb{R}^2 \) de frontière
écrite sur le domaine plan d'épaisseur 1 obtenu suivant la même démarche que pour deux tenseurs P. On a aussi utilisé les notations ∇ où l'on a posé γ variable et la dérivée seconde par rapport à la variable i. L'équation (6) est de la forme

$$\forall H, \quad W(H) = \min_{\forall H', \beta > 0, \gamma > 0} (1 + \|H\|^p - \beta)\|H - H'\|\|H - H'\|^p.$$

On remarque aussi que la troisième hypothèse dans (6) est assez naturelle, en particulier elle est vérifiée si W est A-quasiconvexe suivant l'opérateur A cité ci-dessous (voir [11] et [5]). D'autre part, supposer que la fonction W soit A-quasiconvexe (pour un opérateur A convenable) est nécessaire et suffisant pour avoir la semicontinuité inférieure de la fonctionnelle d'énergie $3D$ dans (2). On s'intéresse au comportement asymptotique de l'énergie \tilde{e}^h ainsi que celui de ses éventuels minimiseurs sur l'ensemble des déformations admissibles V (3) lorsque l'épaisseur du film mince tend vers zéro. Pour cela, on utilise les outils de la Γ-convergence (voir [3]). Tout d'abord, on procède à un changement d'échelle afin de travailler sur un domaine indépendant de l'épaisseur h (voir [8]). L'énergie écrite sur le domaine plan d'épaisseur 1 obtenu suivant la même démarche que dans [9] est de la forme

$$e(h)(\varphi) = \int_{\Omega_1} W\left(\left(\nabla^2 \varphi + \frac{1}{p}(e_3 \otimes \nabla \varphi_{,3} + \nabla \varphi_{,3} \otimes e_3) + \frac{1}{p}e_{33} \otimes e_3 \otimes e_3)\nabla A_h \right) + \left[\nabla \varphi \otimes e_{33} \otimes e_3\right] \nabla^2 \Psi^{-1}(\Psi(x_1, x_2, x_3))\right) d_0(x) dx,$$

où $\varphi_{,i}$, $\varphi_{,ij}$ désignent respectivement la dérivée première par rapport à la ième variable et la dérivée seconde par rapport à la ième et jème variable de φ, et où l'on a posé $d_0(x) = \det \nabla \Psi(x_1, x_2, x_3)$ et $A_h(x) = \nabla \Psi^{-1}(\Psi(x_1, x_2, x_3))$. On a aussi utilisé les notations $\nabla \varphi = \varphi_{,i} \otimes e_i$ et $\nabla^2 \varphi = \varphi_{,ij} \otimes e_i \otimes e_j$. Enfin, pour deux tenseurs P et Q d'ordres p et q, $P \otimes Q$ désigne le produit tensoriel contracté de P et Q (voir [10]). On étudie le problème de minimisation suivant : trouver $\varphi(h) \in V_h$ vérifiant

$$e(h)(\varphi(h)) = \min_{\varphi \in V_h} e(h)(\varphi),$$

avec $V_h = \{ \varphi \in W^{2,p}(\Omega_1; \mathbb{R}^3); \varphi(x) = \Psi(x_1, x_2, x_3) \text{ sur } \partial \omega \times (-\frac{1}{2}, \frac{1}{2}) \}$.
Considérons une collection d’opérateurs linéaires $A^{(i)} \in \text{Lin}(E^d, E^l)$, $i = 1, \ldots, N$, où E^d et E^l désignent deux espaces vectoriels réels de dimensions d et l respectivement, et on définit

$$Av := \sum_{i=1}^{N} A^{(i)} \frac{\partial v}{\partial x_i}, \quad v : E^N \to E^d,$$

$$A(w) := \sum_{i=1}^{N} A^{(i)}w_i \in \text{Lin}(E^d, E^l), \quad w \in E^N,$$

où Lin(X, Y) est l’espace vectoriel des applications linéaires de l’espace vectoriel X dans l’espace vectoriel Y.

De plus, on suppose que A satisfait la propriété de rang constant, i.e. il existe $r \in \mathbb{N}$ tel que

$$\text{rang} A(w) = r \quad \text{pour tout} \quad w \in S^{N-1}.$$

(où S^{N-1} désigne la sphère unité de \mathbb{R}^N).

Définition 1.1 (cf. [4], [2]) Considérons une fonction Borélienne $f : \mathbb{R}^d \to \mathbb{R}$, la A–quasiconvexification de f en $v \in \mathbb{R}^d$ est donné par

$$Q_A f(v) := \inf \left\{ \int_{Q} (f(v + w(x))) dx : w \in C^\infty_{\text{per}}(\mathbb{R}^{N}; \mathbb{R}^{d}) \cap \text{Ker} A, \int_{Q} w(y) dy = 0 \right\},$$

(où Q désigne le cube unité de \mathbb{R}^{N}).

Soit $f : \text{Sym}(\mathbb{R}^{2}) \times M^{3 \times 2} \to \mathbb{R}$ une fonction Borélienne, on écrira dans ce qui suit $Q_A f$, pour désigner la A–quasiconvexification de f, défini dans (1.1), rattachée à l’opérateur différentiel $A^2 := (A_2^2, A_3^2)$ donné par

$$A^2 : v \equiv (h, \xi) \in \text{Sym}(\mathbb{R}^{2}) \times M^{3 \times 2} \to (A_2^2 h, A_3^2 \xi) \quad (8)$$

où

$$A_2^2 h = \left(\frac{\partial h_{j_1}}{\partial x_2} - \frac{\partial h_{j_2}}{\partial x_1} \right)_{i=1,2,3, j=1,2} \quad \text{et} \quad A_3^2 \xi = \left(\frac{\partial \xi_{i_1}}{\partial x_2} - \frac{\partial \xi_{i_2}}{\partial x_1} \right)_{i=1,2,3}.$$

On peut facilement vérifié (voir [5]) que

$$\left\{ h \in C^\infty(Q_2; \text{Sym}(\mathbb{R}^{2})) : A_2^2 h = 0, \int_{Q_2} h dx = 0 \right\} = \left\{ D_p^2 u : u \in C^\infty_{\text{per}}(Q_2, \mathbb{R}^{3}) \right\}, \quad (9)$$

où Q_2 désigne le cube $[0,1]^2$. En plus, pour tout $w \in S^1 : \dim \text{Ker}A_2^2(w) = 3$.

On a aussi que

$$\left\{ \xi \in C^\infty(Q_2, M^{3 \times 2}) : A_3^2 \xi = 0, \int_{Q_2} \xi dx = 0 \right\} = \left\{ D_p \varphi : \varphi \in C^\infty_{\text{per}}(Q_2, \mathbb{R}^{3}) \right\}, \quad (10)$$

et il en résulte que pour tout $w \in S^1$ dim Ker$A_3^2(w) = 3$.

On peut aisément voir que A^2 est un opérateur de rang constant et que Ker$A_3^2(w) = \left\{(X, V) \in \text{Sym}(\mathbb{R}^{2}) \times M^{3 \times 2} : (X, V) = (b \otimes w^{\otimes 2}, a \otimes w), a, b \in \mathbb{R}^{3} \right\}$, pour tout $w \in S^1$ où $w^{\otimes 2}$ désigne le produit $w \otimes w$.

4
2 Résultats principaux

Soit \(p > 1 \). On prolonge l’énergie \(e(h) \) à \(L^p(\Omega_1; \mathbb{R}^3) \) tout entier en posant pour tout \(\varphi \in L^p(\Omega_1; \mathbb{R}^3) \)

\[
e^*(h)(\varphi) = \begin{cases} e(h)(\varphi) & \text{si } \varphi \in V_h, \\ +\infty & \text{ sinon.} \end{cases} \tag{11}
\]

Naturellement \(\varphi(h) \) minimise également \(e^*(h) \) sur \(L^p(\Omega_1; \mathbb{R}^3) \). On a le lemme suivant.

Lemme 2.1 Soit \(\varphi_h \in L^p(\Omega_1; \mathbb{R}^3) \) une suite vérifiant \(e^*(h)(\varphi_h) \leq c \) avec \(c \) une constante positive. Il existe alors \(\varphi^0 \in W^{2,p}(\Omega_1; \mathbb{R}^3) \), \(b^0 \in W^{1,p}(\Omega_1; \mathbb{R}^3) \) et \(\bar{c} \in L^p(\Omega_1; \mathbb{R}^3) \) tels que pour une sous-suite de \(\varphi_h \) (encore notée \(\varphi_h \)) on a

\[
\begin{align*}
\varphi_h &\to \varphi^0 \quad \text{dans } W^{2,p}(\Omega_1; \mathbb{R}^3) \quad \text{faible} \\
\frac{1}{p}\varphi_{h,3} &\to b^0 \quad \text{dans } W^{1,p}(\Omega_1; \mathbb{R}^3) \quad \text{faible} \\
\frac{p}{2}\varphi_{h,33} &\to \bar{c} \quad \text{dans } L^p(\Omega_1; \mathbb{R}^3) \quad \text{faible}
\end{align*} \tag{12}
\]

avec \((\varphi^0, b^0, \bar{c}) \in V_0 \) où

\[
V_0 = \left\{ (\varphi^0, b^0, c) \in W^{2,p}(\Omega_1; \mathbb{R}^3) \times W^{1,p}(\Omega_1; \mathbb{R}^3) \times L^p(\Omega_1; \mathbb{R}^3) \right\} \text{ vérifiant } \varphi^0_3 = 0, b^0_3 = 0 \text{ et } \varphi^0(x) = \Psi(x_1, x_2, 0), b(x) = \Psi_3(x_1, x_2, 0) = a_3(x_1, x_2) \text{ sur } \partial \omega \times \left(-\frac{1}{2}, \frac{1}{2}\right) \}
\]

On passe ensuite au calcul de la \(\Gamma \)-limite de l’énergie par rapport aux deux premières convergences dans (12). On définit \(W_0 : \mathcal{S} \times M^{3 \times 3} \times \mathbb{R} \times M^{3 \times 3} \times M^{3 \times 3} \rightarrow \mathbb{R} \) par

\[
W_0(x, \mathcal{T}, z, K, \xi) := \inf_{\xi \in \mathbb{R}^3} \mathcal{W} \left[\left((K + (e_3 \otimes \xi + \xi \otimes e_3) + c \otimes e_3 \otimes e_3) \otimes A_0 \right)^T \otimes A_0 + \left[\mathcal{T} + z \otimes e_3 \right] \otimes \nabla^2 \Psi^{-1}(\Psi(x_1, x_2, bx_3)) \right]. \tag{13}
\]

D’autre part, en rappelant la définition 1.1, on pose

\[
Q_4 W_0(x, \mathcal{T}, z, h, \xi) := \inf \left\{ \int_{Q_2} W_0(x, \mathcal{T}, z, h + D^2_{\rho} u, \xi + D_{\rho} v) : u, v \in C^\infty_\text{per}(Q_2; \mathbb{R}^3) \right\}.
\]

Soit \(\varphi^0 \in W^{2,p}(\Omega_1, \mathbb{R}^3) \) tel que \(\varphi^0_3 = 0 \) et \(b^0 \in W^{1,p}(\Omega_1, \mathbb{R}^3) \) tel que \(b^0_3 = 0 \) et

\[
E^*(0)(\varphi^0, b^0) = \int_{\omega} Q_4 W_0(x, D^2_{\rho} \varphi^0, D_{\rho} b^0, D_{\rho} \varphi^0, b^0) d_0(x) dx \tag{14}
\]

où \(d_0(x) = \det \nabla \Psi(x_1, x_2, 0) \). On a le théorème suivant

Théorème 2.2 La suite \(E^*(h) \) \(\Gamma \)-converge vers \(E^*(0) \) par rapport aux deux premières convergences dans (12) quand \(h \) tend vers zéro.

Remarque 2.4 En utilisant l'argument standard de la Γ-convergence on obtient la convergence des minimiseurs éventuels de l'énergie (2) vers ceux de l'énergie limite (14) quand $h \to 0$.

Références

