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Abstract

We continue here our study [10, 11, 13] of the thermodynamic limit for various models
of Quantum Chemistry, this time focusing on the Hartree-Fock type models. For the
reduced Hartree-Fock models, we prove the existence of the thermodynamic limit for the
energy per unit volume. We also define a periodic problem associated to the Hartree-Fock
model, and prove that it is well-posed.

*Work partially supported by the European Union TMR, network FMRX-CT 96-0001



1. INTRODUCTION 2

Contents
1 Introduction 2
2 General setting of the models and main results 4
3 Preliminaries 13
3.1 A priori estimates for the Reduced Hartree-Fock and the Hartree-Fock models 13
3.2 Bloch waves decomposition . . . .. . ... ... L Lo Lo 18
4 The Reduced Hartree-Fock model 25
4.1 Lower limit of the energy per unit volume . . . . . . . . ... ... ... ... 25
4.2 The periodic RHF problem . . . . ... ... .. .. ... ... ... .. 39
4.3 Upper limit of the energy per unit volume and conclusion . . . ... .. ... 47
5 The Hartree-Fock model 50
5.1 The periodic HF problem . . . . . . . ... ... ... .. 53
5.2 Upper limit of the energy per unit volume . . . . . . . . . ... ... ... .. 63
6 Extensions and perspectives 66
References 67

1 Introduction

We consider here the thermodynamic limit (or bulk limit) problem for some Hartree-Fock
type models, thereby continuing a long term work that we have begun in [11] with a similar
study in the setting of the Thomas-Fermi-von Weizsacker type models. The results we have
obtained in that framework were summarized in [10]. The thermodynamic limit problem for
the Hartree type models has been studied in [13] and announced in [12]. Those we shall obtain
here have also been announced in [12]. We refer the reader to [11] for a detailed introduction
to these issues (see also [13], for a summary).

Briefly speaking, the so-called thermodynamic limit problem consists in examining the
behaviour of models for a finite volume of matter when the volume under consideration goes
to infinity. Since the energy is an extensive thermodynamic quantity, it is expected that
the energy per unit volume goes to a finite limit when the volume goes to infinity. It is
also expected that the function representing the state of the matter goes also to a limit in
some sense. The thermodynamic limit problem we study (that is, for crystals and at zero
temperature) may be stated as follows.

We consider a neutral molecule consisting of nuclei of unit charge (atomic units will be
adopted in all that follows), and which are located at points k = (k1, ks, k3) of integral coordi-
nates in R?; each nucleus therefore lies at the center of a cubic unit cell Q; = {(z1,z2, x3) €
R3; —% <zi— ki < %, i =1,2,3} (with the convention that @)y will be henceforth denoted
by @). The set of the positions of these nuclei is then a finite subset A of the set of all points
of integral coordinates that is Z> C R3. The union of all cubic cells whose center is a point
of A is denoted by I'(A); its volume is denoted by |A|. Since each cell has unit volume and
each nucleus is of unit charge, |A| is also the number of nuclei and the total nuclear charge.



1. INTRODUCTION 3

It is important to note that, in all that follows, I'(A) may be viewed as a big box into which
the molecule is confined. (This claim may actually be checked rigorously; see Remark 3.2 in
Section 3.1 below.) This assumption is standard for statistical physicists, and is compulsory
at positive temperatures.

Suppose that for A C Z3 fixed, we have a well-posed model for the ground state of the
neutral molecule consisting of |A| electrons and |A| nuclei located at the points of A. Let us
denote by I the ground-state energy, and by ps the minimizing electronic density.

Then, the question of the existence of the thermodynamic (or bulk) limit for the model
under consideration may be stated as follows :

(i) Does there exist a limit for the energy per unit volume \]T\ In when |A] goes to infinity I’

(ii) Does the minimizing density px approach a limit p, (in a sense to be made precise later)
when |A| goes to infinity T’

(iii) Does the limit density po, have the same periodicity as the assumed periodicity of the
nuclei I’

Let us precise now the scope of this article. We shall not deal here with the physical back-
ground of this theoretical problem, and we would rather refer the reader to the textbooks
[6, 55] and the articles [27, 28]. The questions we tackle here are indeed close to questions of
interest in Solid State Physics, both for theoretical and numerical purposes. For the sake of
brevity, we shall not detail here the relationship between our work and Solid State Physics.
We only mention some references here, namely [23, 42], and also [2, 6, 9, 40, 43, 48, 49, 57].

The purpose of our study is twofold: first, we want to check that the molecular model
under consideration does have the expected behaviour in the limit of large volumes; second,
we wish to set a limit problem that is well-posed mathematically and that can be justified in
the most possible rigorous way (in particular with a view to give a sound ground for numerical
simulations of the condensed phase).

The models we shall consider here, and which are described in Section 2 below, are is-
sued from Quantum Chemistry, and therefore, they are models that are only valid at zero
temperature. From the mathematical viewpoint, the thermodynamic limit problem has been
extensively studied, in the zero temperature setting as well as in the setting of strictly pos-
itive temperatures (see [11] or [13] for a brief historical survey). We shall only mention the
ground-breaking work [32] by Lieb and Simon on the thermodynamic limit in the framework
of the Thomas-Fermi theory (TF Theory for short). Indeed, this work was at the origin of
our own study [11] on the Thomas-Fermi-von Weizsicker model (TFW model for short), and
has largely influenced our work.

In [11], we have proved that the three questions (i)—(ii)—(iii) of the thermodynamic
limit problem that we have raised above can be answered positively in the setting of the
TFW theory. We find it useful to briefly emphasize the fact that many of the concepts and
techniques that we have used in [11] (some of them being inherited from Lieb and Simon,
some others being introduced by us in order to treat the TFW case) will be useful here.
Taking benefit from the work by Lieb and Simon who had already defined the TF periodic
problem, the idea to introduce the periodic TFW problem was straightforward. Our “only”
contribution was therefore to prove that the TFW model does converge in the thermodynamic
limit to the guessed periodic model.
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The Thomas-Fermi type models are derived from the so-called Density Functional Theory.
In this framework, the electronic ground state is determined globally by a single function: the
electronic density. In the Hartree model [13] and in the Hartree-Fock model that we study
now, the |A| electrons are described by |A| wave-functions, whose number thus goes to infinity
while passing to the thermodynamic limit. The analysis of these models is therefore expected
to be much more intricate than in the Thomas-Fermi case. As a matter of fact, we have not
been able to do in the Hartree-Fock setting everything we did in the TFW setting; that is to
prove the convergence of the energy per unit volume in the thermodynamic limit. We shall
see below that even the guess on the periodic problem is not so obvious in the Hartree-Fock
model. Consequently, the mere definition of the limit problems turns out to be a substantial
piece of the work. Actually, it is worth emphasizing that the main obstacle we shall encounter
comes from the lack of convexity of the Hartree-Fock functional. Indeed, our study of the
TFW model [11] (as well as the TF model study by Lieb and Simon [32]) relies in a crucial
way upon the convexity of the energy functionals. For the very same lack of convexity, we
have not been able in [13] to prove the convergence of the energy per unit volume in the
thermodynamic limit for the Hartree model. We have only proved the convergence of the
energy per unit volume in the thermodynamic limit for a simplified Hartree model (namely
the restricted Hartree model), whose energy functional is convex. However, we have proposed
a periodic problem which is likely to be the Hartree model for crystals, and we have proved
that this periodic problem is mathematically well-posed.

Similarly, in the Hartree-Fock setting, we shall not be able to prove the convergence
of the energy per unit volume in the thermodynamic limit. We shall nevertheless prove
the convergence of the energy per unit volume in the thermodynamic limit for a simplified
Hartree-Fock model, whose energy functional is convex (namely the reduced Hartree-Fock
model, treated in Section 4).

As far as the Hartree-Fock model is concerned, we shall suggest a periodic problem candi-
date to be the thermodynamic limit (see Section 5). We shall prove that this periodic problem
is mathematically well-posed. By the way, it is worth emphasizing the fact that the Euler-
Lagrange equations that are derived from our periodic HF problem are already known in the
Quantum Chemistry literature (see, for example, [42]), thereby strengthening our conviction
that our model is the correct one.

This paper is organized as follows. The forthcoming Section 2 is devoted to the definition
of the general setting we shall work in, and to the detailed presentation of the results we
shall establish. Section 3 collects a priori estimates for the Reduced Hartree-Fock and the
Hartree-Fock models and a detailed description of the so-called Bloch waves (or Floquet)
decomposition, which is a well-known tool by Solid State physicists, and which will also play
a great role in our study. Section 4 and Section 5 are concerned with the Reduced Hartree-
Fock and the Hartree-Fock model respectively. The last section of this paper is devoted to
various comments and extensions. We shall also describe there some directions of current
research.

2 General setting of the models and main results

Let us begin this section by defining the molecular models we shall deal with in this article,
namely the Hartree-Fock model, and one of its simplified form, the reduced Hartree-Fock
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model. For the sake of brevity, we shall often abbreviate the names of these models, and
write simply the HF and RHF models, respectively.

We recall from the introduction that, for each A, finite subset of Z3 C R3, we consider
the molecular system consisting of |A| nuclei of unit charge that are located at the points of
A and of |A| electrons. We shall henceforth denote by

Vi) =3 (2.1)

o — k[’
keA

the attraction potential created by the nuclei on the electrons, and by

1 1 1
Uy == P — 2.2
m#n

the self-repulsion of the nuclei.

As in [11], we shall also consider the case when the nuclei are not point nuclei but are
smeared nuclei. In that case, each Dirac mass located at a point & of A is replaced by a
compactly supported smooth non-negative function of total mass one, typically denoted by
m(- — k), and “centered” at that point of A. The regularity of the function m does not play
a great role in the sequel, and therefore we shall assume without loss of generality that m is
C®°. The potential (2.1) and the repulsion (2.2) are then respectively replaced by

Vir) = Y mx x%k'
keA

1 1 1
SUR = iD(Zm(- +k),Y m(-+k) - 5[ AID(m,m).
keA keA

In the above equation, we have as usual denoted by D(-,-) the double integral defined as

follows
_ f(z) f(y)
pi.n=[f  FIE ey

It will be convenient to introduce in this setting the function
ma = Z m(- — k).
keA

In this setting of smeared nuclei, we shall also make use of the effective potential ®, defined
for each electronic density pp as follows

1
@A = (mA*pA)*m.

We are now in position to introduce the molecular models we shall deal with.
The Hartree-Fock model, which is the most commonly used model in Quantum Molecular
Chemistry [41] can be written as follows

1
I} = nf (B (K) + 5Ux : K € Ka ), (2:3)
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where the set of minimization K, consists of self-adjoint operators K on L?(R?) such that

={0<K<1,Tr K =|A|, Tr[(—A - VA)K] < 400}, (2.4)
with 1 denoting the identity on L?(R?). The energy functional E{¥ in (2.3) is given by
1 2
EJF(K) = Tr[(—-A - VA)K // P& 2) PY:Y) gy L / 0@ 9 gy, (2.5)
\w - yl 2 |z =yl
R3><R3 R3xR?

with p(-,-) denoting the kernel of the Hilbert-Schmidt operator K. Let us now define the
various quantities that appear in the above definition of the Hartree-Fock model.

The operator K is the so-called (reduced) one-particle density matriz. From the general
theory of trace-class operators on L2(R3) (see, for example, [44]), any operator K in Ky
admits a complete set of eigenfunctions (¢,),>1 in H'(R?) associated to the eigenvalues
0 < A <1 (counted with multiplicity). Thus we may decompose K along such an eigenbasis
of L2(R?), in such a way that its Hilbert-Schmidt kernel may be written as

Y) =) Anon(z) @ (1).

Owing to the fact that K is trace-class, the corresponding density is well-defined as a non-
negative function in L'(R?) through

= Z An |<Pn($)‘2a
n>1

and Tr K = |[A] = ng p(z,z)dx =) -, Ap. Moreover, according to this spectral decompo-
sition of K, we may give a sense to

=Y [ eulo)a, (26)

n>1

while Tr[Vy K] =3, 51 An Jrz Va(@) |on(@)? dz = [gs Val(z) p(z, z) dz.

It is a standard fact [30] that this formulation of the Hartree-Fock problem is equivalent
to the following one, which might be more familiar to the reader

' 1
e = 1nf{E,)\LIF(<P1§---§<PA) t5UA: @i € H' (R3)=/

[ =dsa<ii<nl) @

Al

E{ (15 . 5P Z/ Ve;|? / Va(z) p(z) dx

1 1 2
2 ) rexms |z — Y| 2 )) rexms |z —y|

« A . .
where p(z,y) = Z 1<,ol( z)i(y)*, p(z) = p(z,z) = Z‘i:‘l \pi(z)|2. This equivalence means
that every minimizer of (2.3)—(2.5) is a projector with finite rank |A|. In this latter formulation

the ¢;’s are interpreted as the electronic wave-functions. Let us observe that the formulation
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in terms of density matrices is more intrinsic, and therefore sometimes more convenient to use
than the second one. Indeed, for every unitary transform U in C/Al, and for every orthonormal
family (4:)1<i<a in H'(R3) /A, we obviously have EIF(U(p1;.. PiA)) = El (o155 PIA)s
while the density matrices that are respectively associated to U(p1;...;0a) and (@155 9)4))
are the same.

It is of course straightforward to deduce from the point nuclei setting (2.3)—(2.5) the
analogous smeared nuclei setting for the HF problem; namely

m . 1 A
IA"HF = 1nf{Tr[AK] + §D(,0 — M, p—MA) — %D(m,m)

1 z, )2
——// dedy; KEICA}. (2.9)
2)J) raxms |7 — Y

We also remark that the equivalence with a standard form of the type (2.7)—(2.8) obviously
holds true.

As announced above, we shall also consider in the sequel the following simplified form of
the Hartree-Fock model; namely the reduced Hartree-Fock model:

1
TRIF — inf{Ef”F(K) +5Un; K€ ICA}, (2.10)
1
EfTT(K) = Tr[(=A - VA)K] +5D(p.p), (2.11)

(where ICy is still defined by (2.4)), and respectively its analogous smeared nuclei model

1 1
IK%,RHF — inf{Tr[—AK] + ED(p —MA, P —Mp) — E\A\ D(m,m); K € ICA} . (2.12)

In order to turn to the thermodynamic limit problem per se, it is now time to recall the
properties of the sequence of sets A that we shall consider. For the sake of completeness, we
recall here the following definition taken from [11] and [32].

Definition 1 We shall say that a sequence (A;)i>1 of finite subsets of Z3 goes to infinity if
the following two conditions hold :
(a) For any finite subset A C Z3, there exists i € N such that

Vi > 1, ACAj.

(b) If A" is the set of points in R3 whose distance to OT'(A) is less than h, then

A

lim =0, Vh > 0.

Condition (b) will be hereafter referred to as the Van Hove condition.

Briefly speaking, a sequence satisfying the Van Hove condition is a sequence for which
the ‘boundary’ is negligible in front of the ‘interior’. A sequence of large cubes typically
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satisfies the conditions of Definition 1. We shall only consider henceforth so-called Van
Howe sequences which are going to infinity in the sense of the above definition. Occasionally,
some additional conditions will also be required (see Theorem 2.2). Following the notation of
[32, 11], we shall write henceforth limp_, o f(A) instead of lim;_, o f(A;).

Before introducing the Hartree-Fock type periodic models, it is to be noticed that a
key-point for their definition is the understanding of laws of interactions between periodically
arranged particles. Indeed, owing to the long-range of the Coulomb potential, the electrostatic
potential created by the infinite lattice of nuclei cannot be simply ), s ﬁ, since this series
obviously does not make sense.

We first of all introduce the periodic potential G that is uniquely defined by

—AG =4m(=14 Y (- —y)), (2.13)
yez3

and

/QG =0, (2.14)

with ¢ being the Dirac measure. Due to our choice of normalization (2.14) for G, we also
need to define the constant

M = lim [G(gc) ! } . (2.15)

z—0 B m

We shall see in the sequel that this periodic potential G (which is also the Green’s function
of the Laplacian with periodic conditions on the unit cell) is the interaction electrostatic
potential created by the periodic distribution of charges of nuclei. We denote

Dalf,f) = / / o [CE 1) ddy

f@) == [

x| Jg le—yl’

We also define

and then

fa(z) —Z(|mlk _/Q frdlfi/|>

keA

It is convenient to rewrite fj as
1
A =Va—xrn) *
]
where, more generally, we shall denote by xq the characteristic function of the domain €.

Besides, it is proved in [32], and recalled in [11], that, when @ is a cube,

fa) < &

z|
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almost everywhere on R?, for some positive constant C and that f, converges to the periodic
potential G + d, for some real constant d that is independent of A, uniformly on compact
subsets of R?\ Z3. Moreover, for any compact subset K of R3, fy — Y okeAnK ﬁ converges

uniformly on K to G +d — ), cz3qx ‘CL‘]T]C‘ (see [32]). Therefore, we may noteworthy observe

that the periodic potential G which was previously defined by (2.13) and (2.14) is also given
by

1 1
66 = ¥ (5 /Qum‘“’)"

keZ3

that is, the sum over the lattice points of the Coulomb potential created by a point charge
placed at the center of the unit cube, and which is screened, on each cell, by a uniform
background of negative unit charge. This screening effect which is commonly observed in
thermodynamic limit issues (see [25, 26, 27, 32, 11, 13]) is a consequence of the electrical
neutrality of the molecular systems under consideration.

Let us now turn to the periodic problems we want to define. We shall detail in Section 3.2
below the reasons why we need to introduce the following set of operators, which are aimed
to become the analogues of the usual density matrices in the periodic case.

Definition 2 Let Q* = [—m; +7[?, and, for every & in Q*,

LE(Q) ={ue L} (R?; e “%u is Q — periodic}.

We now consider families of operators K¢ (6 € Q*), which are self-adjoint on L?(Q), and
which enjoy the following properties, for almost every & € Q. '

(H2)’ 0 < K¢ <1, with 1 being the identity on LE(Q),

(H3) the operators K¢ have finite traces, and satisfy TrLg(Q)KE
Q*

(H4) TrLg(Q)[_AﬁKﬁ] < +oo and [, Trr2q) [—AeKe] dé < +oc.

To every such family of operators is associated, in a unique way, a self-adjoint operator K in
L*(R3), denoted by K = fQ* K¢ (2& such that

7-(-)37 ¢
(H1) K commutes with the translations of Z3;
(H2) 0< K <1.

We denote by K the set of operators K = fQ* K¢ % which satisfy the conditions (H1) (H4)

(or equivalently (H2’), (H3) and (H4)), and we shall call K a periodic density matriz.

In all that follows, we shall denote by p(¢,-,-) the Hilbert-Schmidt kernel of K¢. Owing
to the fact that K¢ is a trace-class operator, we may give a sense to p(§, =, z) as a Q-periodic
function in L{ (R?), and to

pla) = [ plena) i (2.16)
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Moreover, p(z) is also a Q-periodic function in L{ (R?), which will play the role of the
electronic density in crystals. Let us emphasize once more the fact that the definitions of the
various quantities appearing in the above definitions are made precise in Section 3.2 below,
and, more specifically, in Proposition 3.2 therein.

With the help of the above definitions, we are now able to state the periodic minimization
problems associated to the above RHF and HF models. First, for the RHF model (2.10)—
(2.11), we set :

o = inf{E;Z’jF(K) K € IC}, (2.17)
EFIE(R) = [ Trps o [-AK] 4 —/ Gp+ 1DG(,o p) (2.18)
per o L (Q) 3 (27)3 0 9 P :
with p being defined by (2.16). The analogous model in the smeared nuclei setting is written
[UFEIE — inf{ 7 FIT(K) K € K}, (2.19)
m,RHF d£ 1 1
By (K) = Jo- TrLZ(Q)[ AK| @) + 2DG(p m,p—m) — ED(;(m m).  (2.20)

We shall prove in Section 4 the following results.

Theorem 2.1 (Well-posedness of the RHF periodic problem)

The minimization problem defined by (2.17) and (2.18) (respectively by (2.19) and (2.20))
admits a minimum. In addition, the corresponding minimizing density p is unique and, thus,
shares the symmetries of the unit cube.

Theorem 2.2 (Thermodynamic limit for the RHF energy) We assume that the Van
Howe sequence A satisfies

hm |A| Log |A"| =0, Vh >0, (2.21)

where A" is defined in Definition 1. In addition, we assume that the unit cell Q of the periodic
lattice is a cube.
In the point nuclei case, we have

1 M
lim —RAF — pRAF 0
A TAL A per T

where the constant M is defined by (2.15). Respectively, in the smeared nuclei case, assuming
in addition that m shares the symmetries of the unit cube QQ, we have

l o m.RHF rHRP L M
lim —— 7 RHE — m, el
A AT A per T

where the constant M is this time defined by

M= '//QXQ m(z)m(y) [G(x —y) = | dady. (2.22)
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Some comments are in order. The reader has remarked that some technical assumptions (Q
is a cube, (2.21), and m has cubic symmetry) have been made in the above theorem. We
need these technical assumptions in Section 4, and more precisely in Subsection 4.3 to prove
that the upper limit of WIRHF may be compared from above by Iil,‘;fF + M. A technical
assumption such as (2.21), that is satisfied by all Van Hove sequences except some very
pathological ones, already appears in [11]. However, in [11], we manage to get rid of all these
technical assumptions using another strategy of proof for results like Theorem 2.2; namely
the “energy via density” strategy. Here, such a strategy, based upon the convergence of the
minimizers, is out of reach. Of course we believe they are not necessary here either. We
believe there is room for improvement in our proofs and some other strategy could allow one
to do without these assumptions. Unfortunately, we have not been able to do without them
so far.

On the contrary, no additional assumption at all is necessary for the other results stated in
this work. In particular, the fact that the unit cell is a cube is not important for Theorems 2.1
and 2.3. We shall not repeat this observation in the forthcoming sections, but the reader

should keep it in mind. For further comments, we refer the reader to Section 6.

In view of the above theorem, and in view of calculations that will be detailed in Sections 3
and 5 below, we find it natural to introduce in the Hartree-Fock framework the following
periodic minimization problem :

I = inf{E;if(K) K € IC}, (2.23)

 BaK)  (224)

E,L (K) = Tfr,g(Q)[ AK&] /GP+ 5Da(p,p) — 5

Q*
where p(z) is still defined by (2.16). With p(§;-,-) being the Hilbert-Schmidt of K¢, the
Schwarz kernel of K is given by p(z,y) = fQ* p(&x,y) %, and belongs to L?(Q x R?) (at

least ; see Proposition 3.2 in Section 3.2 below). For some reasons which are made precise later
in Section 5, the periodic exchange term f%Eem(K) is then defined by any of the following
two equivalent quantities (see Lemma 5.1 in Section 5 below) :

BepelK) = / dx/ %dy
- //// D& 5,) Wool€ — €5 — 1) p (fru)dfduffdf'.

)2x Q2

The interaction potential W, is defined, for every 5 and z in R?, by

eik-n
Wan2) = 3 (2.25)

keZ3

The analogous problem in the smeared nuclei case reads

Dt = inf{E;';,HF(K) K € IC}, (2.26)
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1
+ 5Dc(p—m.p—m)

m,HF _ 5
By " (K) = | Trpyq)[~AKe] 27 "3

per
Q*

1 1
o EEP’I‘(‘(K) - §DG(’I’I’1,'I’I’1)

(2.27)

For the Hartree-Fock model, we only have hints which indicate that the limit we suggest above
is the correct one. In order to prepare and stimulate future works on the subject, we prove
in Section 5 that the periodic Hartree-Fock problem is well-posed, in the following sense.

Theorem 2.3 (Well-posedness of the HF periodic problem)
The minimization problem defined by (2.23) and (2.24) (respectively by (2.26) and (2.27))
admits a minimum.

Moreover, we establish in Subsection 5.2 the following.

Proposition 2.1 We assume that the Van Hove sequence A satisfies (2.21). In addition, we

assume that the unit cell Q) is a cube, and that there exists a minimizer K € K of Ipf{ef whose
density p shares the symmetries of the unit cube. Then,
1T M
limsup A — < 7HF 4 — 2.28
A—)oop ‘A‘ = Lper 9 ( )

where Iﬁf is defined by (2.23)-(2.24).
Finally, we define the following useful functional transformation which is a particular convex
combination, and that we have already used in [11]. It will be again very efficient in the
present work in Subsection 4.1, by allowing to take advantage of the convexity of the reduced
Hartree-Fock functional, in order to compare from below the lower limit of the energy per
unit volume by the corresponding reduced Hartree-Fock periodic model.

Definition 3 For a given sequence A and a sequence pp of densities, we call the ~transform
of pa and denote by pp the following sequence of functions

- 1
PA = WZ’OA(' + k).

keA

We shall make use in the sequel of the following notation. If H is a functional space, we
denote by H,.it(R?) the space

Huit(RY) = {$ € D'(RY): ¥ € H(z +Q) ¥z € R”, sup [[$l (o) < o0}
TE

and

H!. (Q) = {u € H..(R?), u periodic in z;,i =1,2,3, of period 1}.

per

As announced in the introduction, the sequel of this paper is devoted to the proofs of the
above results.
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3 Preliminaries

3.1 A priori estimates for the Reduced Hartree-Fock and the Hartree-Fock
models

We begin this section by recalling the existence results of minima for the Hartree-Fock and
the reduced Hartree-Fock models defined in Section 2 through the formula (2.3)—(2.5) and
(2.10)—(2.11) respectively. We shall only state the results and make the proofs in the case
of point nuclei ; stating the analogues in the case of the smeared nuclei brings no additional
difficulty and the proofs are even easier in that case (see [11]).

In the Hartree-Fock setting, the existence of a minimizer for neutral molecules for the
standard Hartree-Fock model (2.7)—(2.8) has been proved by E. H. Lieb and B. Simon in [33]
and by P.-L. Lions in [37]. Moreover, the equivalence between the standard Hartree-Fock
model (2.7)—(2.8) and the Hartree-Fock model stated in terms of density matrices (2.3)—(2.5)
(without restricting the minimization to projectors) is due to E.H. Lieb [30]. Lieb’s proof has
been simplified later by V. Bach [5]. A similar proof by P.-L. Lions may also be found in
[37]. In the reduced Hartree-Fock setting (2.10) (2.11), the existence of a minimizer Ky € Ky
for neutral molecules is due to J. P. Solovej [52]. It is important to notice that, the energy
functional (2.11) is convex with respect to the density matrix. Moreover, thanks to the strict
convexity of p — D(p, p) (this is standard) and of the convexity of the set I, any minimizer
Ky of (2.10) leads to the same density which is uniquely defined (it does not depend on the
minimizer K) (see [52]). Let us henceforth denote by pa(z) this density.

Let us now begin our study of the thermodynamic limit for these models with getting
bounds on the energy per unit volume.
Lemma 3.1 Let A be a Van Howve sequence, then ‘)\‘IRHF

and \/\\IA are bounded indepen-
dently of A.

Proof of Lemma 3.1 :

Since the so-called exchange term —3% [[ ks, gs ‘w y)“ dzdy appearing in the definition

(2.5) of E{'T" is non-positive, it is obvious, from (2.3) (2.5) and (2.10) (2.11) that

A ALY

1 JHF < 1 JRHF
Thus in order to prove the above lemma, we shall first check that ‘)\‘IRHF

above, and then, that
A.

is bounded from
\/\\ F'is bounded from below, with bounds that are independent of
Let us begin with the bound from above, which is simpler. Let ¢ € D(Q) with fQ ©? dx =

1. For each k in A, we set ¢, = ¢(- — k). Then, the trace-class operator K whose Hilbert-
Schmidt kernel is defined by >, . ¢k (%) ¢} (y) is clearly a test function for If7F, with the
electronic density being p = D okeA k|2, Arguing as in [11], Chapter 3, Section 3.2 for the
electrostatic terms, we check successively that

1
FTARR = [ Ve
1Q
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and that

1 1 M 1
lim —— ) - ) .
i A( Ur — /R3VA pAt 5 (PAaPA)) > /QGP+2 a(p: p)

Let us check now the lower bound for the Hartree-Fock energy per unit volume. We first
recall that, by virtue of the so-called Lieb Thirring inequality [35] and the generalization by
P.-L. Lions and T. Paul [39] to the case of general density matrices), there exists a positive
constant Cyr, that is independent of A, such that, for any K in Ky :

Crr / ,05/3 < Tr[-AK]. (3.1)
JR3

On the other hand, the Lieb Oxford inequality [31] gives a lower bound for the exchange
term in the following way. There exists a positive constant C| that is independent of A,
such that, for any K in Kp with density p

2
—Cio / 43 < // lpla:y) © dxdy. (3.2)
RAxR? | — Y|

Whence, with the help of (3.1) and (3.2), the HF model may be compared from below by a
Thomas-Fermi-Dirac type model (see E.H. Lieb [29]), as follows :

1
E{"(K) > CLT/ Pl / Vap+=D(p,p) — CLo/ p'?, (3.3)
R3 R3 2 R3
for every K € Kp. The proof of the lower bound for ‘}\‘ I/f”: is then a consequence of the results

obtained by E.H. Lieb and B. Simon [32] and by the authors [11] for the Thomas-Fermi type
models. We first notice that, when K lies in ICj, because of the Lieb-Thirring inequality (3.1),
the corresponding electronic density p belongs to the set {p > 0, p € L?/3(R?), D(p,p) <
400, [gsp =|Al}. In particular, with the help of the Hélder inequality, and since 1 < % < g,

/ Pt < (/ o) (/ p)” < (/ P A, (3.4)
R3 R3 R3 R3

In addition, with fo = Vi — xp(a) * ﬁ, we recall from [11] that, for every 1 < p < 3,

we get

1fallzo(rs) < C IA]YP. (3.5)
Whence, going back to (3.3),
U 1
BT (K)+ 2 > Cm/ P/ —/ Fa P+ =D(xr(a) — £ Xr(a) — P)
2 R3 R3 2
U 1
—Cho / p' + 7/\ — 5 D(xray, xr) (3.6)
JR?

> Cir / 253 1 fall e 16l oss
R3

12
—CLO(/ p5/3> IA|M2 = Cy|A|
R3

5/3 5/6
Corllpl?s — A% (1l s — Crollpll? AV — ColAl,  (3.7)

Vv
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for every K € K, where, in addition to (3.4) and (3.5) — with p = 2, we have used the
following two facts :

Ua

1
—/ Vap+5D(p,p) + —
R3 2 2

= - ./R3 fap+ %D(Xr(z\) — P, XT(A) — P) T+ % - %D(XF(A)aXF(A)) :
which follows from the definition of f,, and
|Ur — D(xrays xray)l < Co [A], (3.8)
for some positive constant Cj that is independent of A [11]. From (3.7) and by setting
X = H’i\”;;;”, we finally obtain
%I[{{F > O X3 — X — CLo X% — ¢y, (3.9)

for any X > 0. The function of X which appears in the right-hand side of the above inequality
is bounded from below by some constant (independent of A) on the set {X > 0}. This
concludes the proof of the lemma.

o

or I /f’ F indiscriminately, by
pA(+;-) its kernel, and by px = pa(z; z) the corresponding electronic density. As a corollary
of Lemma 3.1 and its proof, we have the following :

From now on, we shall denote by K, a minimizer of IfHF

Proposition 3.1 There exist positive constants C that are independent of A C Z3 such that
the following estimates hold :

1
WTr[—AKA] <C; (3.10a)
1
_/ V/pal? < C; (3.10b)
Al Jrs
1
— | P <c (3.10c)
Al Jrs
1 )
— pr < C, for every 1 <p < —; (3.10d)
Al Jra 3
1
WD(XF(A) — pAsXra) — Pa) < Cand (3.10e)
1 . 2
0< — // leal@ )l gy < (3.10f)
Al ) raxmre |7 — Y

Remark 3.1 The bound (3.10f) on the exchange term was postulated in the chemistry liter-
ature (see [42]) but, to the best of our knowledge, it was not checked rigorously so far except
in the simplified framework of the free electron gas by G. Friesecke [21]. This bound implies
that the exchange term has to be asymptotically of the same order as the volume occupied by
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the molecule, here |A|. In particular, the exchange term exhibits an asymptotic behaviour in
the thermodynamic limit which is completely different from the one of the other electrostatic
terms. (Note that each of them behave separately like \A\5/3 while their sum globally behaves
like |A| (see [11])).

Proof of Proposition 3.1 : We argue only in the framework of the Hartree-Fock model,
the case of the reduced Hartree-Fock model being even easier to deal with. We first show
that (3.10c) holds. Indeed, on the one hand, we know, by Lemma 3.1, that the energy per
unit volume ‘/I\‘I /f’ F'is bounded from above by some constant independently of A. While, on

the other hand, by combining with (3.9) in the special case when X = ”p[/\\!f:m , and by using

Jensen’s inequality, we obtain

C> WIAF 2 C]X5/3 _CQ,

where C, C'y and (5 are positive constants that are independent of A. It is now easy to deduce

(3.10c). Holder’s inequality together with (3.10c) yields (3.10d).

The inequality (3.10f) next follows with the help of the Lieb-Oxford inequality (3.2) and
(3.10d)  with p = 3. From (3.5) and (3.10c), and using Holder’s inequality, we deduce

1
T/R?fAPA <C

We then deduce (3.10e) by comparing (3.10c), (3.10f) and (3.11) with (3.6) and (3.8). Col-
lecting the previous bounds and comparing with the definition (2.5) of EX*(K,), we check
that the last remaining term in the definition of the functional, namely Tr[—AK,], is also of
the order of |A|. This gives (3.10a).

(3.11)

We next observe that for every K in Kp, we have
/ IV/p|* < Tr[-AK]. (3.12)
JR3

Indeed, let K € K, be given, that we decompose along an eigenbasis (¢,)n,>1 € H'(R?) as
in Section 2. Thanks to (2.6), we check successively that :

/ng\/m?:/\ (S )|

n>1
_/ ZA 3% “071'88?) ’ (3.13)
= n>1 ¢
< fr Z(Z ol [52])
<[ 0 1Z(ZA onl?) (S0 52 ) (3.14)

n>1 n>1

/ S A [V 2 = Tr{—AK]

n>1
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with the help of the Cauchy-Schwarz inequality to obtain (3.14) and with the convention that
the quantities inside the integrals in the right-hand sides of (3.13) to (3.14) are zero almost
everywhere in the region where p itself vanishes. Finally, thanks to (3.12), (3.10b) is a direct
consequence of (3.10a). This concludes the proof of the proposition. &

From these bounds on the energy per unit volume, we deduce as in [11, 13], the following
two corollaries.

Corollary 3.1 (Compactness) For any Van Hove sequence A, we have
[ o=l (3.15)
Jr(a)ye

Remark 3.2 The above corollary says that, asymptotically, |A| + o(|A|) electrons lie in the
“big box” T'(N). With this result together with the fact that the van Hove condition allows to
neglect the surface effects, it turns out that, at zero temperature, any boundary condition for
the wave functions or the electronic density on a big box (like Neumann, Dirichlet or periodic
boundary conditions) give rise to the same periodic model after passing to the thermodynamic
limit. This, of course, may be particularly relevant for numerical computations.

Proof of Corollary 3.1 : This is a direct consequence of (3.10e) (see [11], Section 3 in
Chapter 3). O

The second corollary makes use of the notion of ~-transform, introduced in [11] and
recalled in Definition 3 in Section 2.

Corollary 3.2 For any Van Hove sequence A, the sequence \/pa is bounded in Hlllnif(R3),
independently of A. Moreover,

lim oa = 1. (3.16)
A—oc Q

The above bounds on g, which are easily deduced by a convexity argument from the definition
of the ~-transform and from the bounds (3.10b) and (3.10d), will be useful while passing
to the lower limit on the energy per unit volume for the reduced Hartree-Fock model in
Subsection 4.1.

Let us end this subsection by recalling the following result which asserts that the limit
of a sequence of ~-transforms is necessarily periodic. We skip its easy proof, for which all
arguments may be found in [11].

Lemma 3.2 Let A be a Van Hove sequence in the sense of Definition 1. Let fo be a sequence
of function such that, either || fa|l;» Lmy) <Cor I fallrr(rs) < C|AY?, for some p € [1, 400

and some constant C that is independent of A. Let us assume that fp converges to some f,

p

loc — when 1 <p < +o0, orin L —xweak — when

almost everywhere on R3, or weakly in L
p = +4oo. Then, f is periodic.

In order to state rigorously the periodic models we shall consider below, we extend in the
forthcoming section the classical notion of one-particle density matrix used for molecules to
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its analogue for crystals. This construction will allow us to set the RHF and HF models for
crystals in terms of such “periodic density matrices”. These new objects are closely related
to the so-called Bloch waves decomposition classically used in Solid State Physics, as we shall
see below.

3.2 Bloch waves decomposition

Let Q = [ 3;+3[? be the unit cube of R? centered at 0. We denote by Q* = [~m; +[? the
unit cell of the dual (or reciprocal) lattice associated to Z*. In full generality, while working
with a general periodic lattice (with unit cell still denoted by @), Q* is the so-called Brillouin
zone associated to the dual lattice (see for example [45, Section XIII-16]).

In the sequel, we shall denote by K a self-adjoint operator in L?(R3), which is aimed
at being the “periodic density matrix” we are looking for, and that enjoys the following
properties :

(H1) K commutes with the translations which leave the periodic lattice Z® invariant;
namely

V keZ?, 7w K=K,
with 75, being defined by

Thp = (- + k)
for any function ¢ on R3.

(H2) 0 < K < 1, in the sense of self-adjoint operators in L?(R?), with 1 being the identity
operator on L?(R?).

Because of (H1), K is not a compact operator. However, generally speaking, taking
advantage of this invariance property of K, we shall be able to decompose K into a continuous
family of compact, and even trace-class, operators, whose spectral decomposition is therefore
very simple. It is classical to study the spectral resolution of K as an operator on L?(R?)
with the help of the so-called Bloch waves decomposition of K which has been introduced
by G. Floquet [20] in the one dimensional case and by F. Bloch [7] in the general case.
We shall explain now the main ingredients of this method following mainly the formalism
of M. Reed and B. Simon [45, Section XIII-16] together with the book by C. Conca, J.
Planchard and M. Vanninathan [16]. Among the wide literature which is devoted to the
Bloch waves decomposition (and some applications), we refer more specifically the reader to
[2, 15, 17, 18, 19, 22, 24, 56].

The spirit of this decomposition is the following : we may construct a decomposition
of LQ(R3) according to this invariance by translation. For this purpose, we define H =
L?(Q*; L*(Q)). Then, there is an isometry U between L?(R?) and H, the so-called Floquet
operator, defined by U : L?(R?) — H and

(Up)e(x) = Z eiik'ggo(x + k), forae &€Q* z€Q, (3.17)
keZ3
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for any ¢ in the Schwartz class S(R?). One may check (see [45]) that U is unitary from
L%*(R?) onto H and that the inverse of U is U* defined, for all £ — g¢ in H, by :

(U*g)(z+ k) = / e* e () (Qd—),;, for all k€ Z3, for a.e. z € Q. (3.18)
)

*

We write down explicitly the fact that U is an isometry, using (3.17) and (3.18), and we
obtain the following identity

dg
(b)rms) = [ (U0 U012 o (3.19)
for any functions ¢ and v in L?(R?), from which we also infer that, in particular :
dg
ol ey = /Q Nl g (3.20)

Let us make a few comments on the definition (3.17). First of all, the expression appearing
in the right-hand side of (3.17) may be seen as a Fourier series expansion with respect to the &
variable, and whose coefficients lie in L?(Q). Next, it is clear from (3.17) that e "®€(Up)¢(z)
is @-periodic. Such functions are often called quasi-periodic functions with quasi-momentum
&. They are known as Bloch waves in the Solid State Physics literature. It is more convenient
(and we shall always do it in the following) to look at (Ug)¢ as a function lying in L?(Q),
with

loc

Li Q) ={p € Ly, (R?) [ oz + k) = '*4p(2),V k € Z°, for ae. x € Q},
or, equivalently,
LE(Q) = { € Ljyo(R?) / ¢ **%p(x) is Q-periodic }.

It is clear from the second formulation, that L?(Q), endowed with the usual Hilbert scalar
product on L?(Q), is a Hilbert space which is isomorphic to L?(Q).

With the help of the isomorphism U between L?(R?) and H, we now return to the spectral
analysis of the operators K satisfying (H1) by following [45].

To the above decomposition of functions in L?(R?) into Bloch waves corresponds a so-
called direct integral decomposition of K in the sense that there exists a unique function
£ — K¢ in L“(Q*;C(Lg(@))) (in that follows, £(X) denotes the space of bounded linear
operators from X into itself) such that, for any function ¢ in L?(R?) and almost every &

in Q*:

(UKyp)e = K¢ (Ug)e - (3.21)
Moreover, we also have :
sup (| Kellzzq) = 1Kl may)- (3.22)
£eqQr
And we shall write
d
K- £ (3.23)

Ke —2
JQ* ¢ (2m)3
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in order to refer to the decomposition (3.21) of K.

The spectral analysis of K now reduces to the spectral analysis of the family of self-adjoint
operators K¢ € E(LE(Q)), the parameter ¢ varying in Q*. We now enter the details of such a
decomposition for a special class of operators satisfying (H1) and (H2) which will appear below
in the setting of the periodic reduced Hartree-Fock and the periodic Hartree-Fock models.

From now on, let us denote by K an arbitrary self-adjoint operator satisfying (H1) and
(H2). We assume that there exists a kernel representation of K of the form

Kola) = [ olaz)ets) do.

say for any function ¢ in S(R?), with p(-;-) € L2 _(R? x R?). Note that (H1) is then equiva-

loc
lently written
plz+kiy+k)=px;y), forevery ke Z3 ae. onR>xR3, (3.24)
while the self-adjointness of K simply reads
p*(z;y) = ply; @),

where z* denotes the complex conjugate of z (€ C). We shall now impose further conditions
on the kernel p.

As a consequence of the definition and of the uniqueness of the decomposition (3.23) of
K, we deduce that each operator K¢ is self-adjoint [45]. Moreover, we have the following

Lemma 3.3 Let K = fQ* K¢ (2% Then, (H2) is equivalent to :

)2
(H2) 0 < K¢ < 1 in the sense of self-adjoint operators in E(LE(Q)), and for almost
every & in Q*.

We are searching for operators K for which the K¢’s are Hilbert-Schmidt, and more specifi-
cally, we shall rely upon the following.

Lemma 3.4 Let K = fQ* K¢ % Then the following two properties are equivalent :
(i)
p € L*(Q xR)NNLAR? x Q). (3.25)

(ii) For almost every & in Q*, K¢ is a Hilbert-Schmidt operator with kernel p(&; x;y) and
p(&aiy) € LH(QM LA (Q % Q)).

Moreover, if K satisfies (1) or (ii), we have

'/Q* % //QXQ p(& asy) | dady = .//QXR3 \p(z;y)|? dedy. (3.26)

In addition, p and p(&;-;-) are related as follows : for almost every x and y in Q, and & in

Q@

pleiaiy) = D ¢ W oplat+kiy) = Y ey + k). (3.27)
keZ3 keZ3
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hence

pw;y) = /Q* p(& 21 y) (2(f)3- (3.28)

Proof of Lemma 3.3 : The proof mimics that of (3.22), which may be found in [45, Section
XIII1.16 | (proof of Theorem XIII-83). We shall partially reproduce the argument here for the
sake of consistency.

In virtue of (3.22), and since (H2) implies in particular that

1K zr2me)) < 1,

it just remains to check that K¢ > 0 for almost every { € Q* as soon as K > 0 (the reverse
implication being even easier to prove).

Following [45], we choose a dense subset {3 }>1 of the unit sphere of L?(Q), and we take
an arbitrary function f > 0 in L'(Q*). We check now that, for every k > 1,

./Q* f(g)(Kf ﬁk7ﬁk)]42(Q) (27’(’)3 >0

Our claim will follow then immediately, since we already know that the (K¢ By; 5;)’s belong
to L>®(Q*). Let us first note that \/f belongs to L?(Q*). Then, if we set g, = U*(\/f B),
gr € L?(R?), and by using the definition (3.21) of K¢ together with the definition (3.19) of
the scalar product on H, we have

/Q*f(f)(Kﬁﬂk;ﬂwm(@ e = /Q (Ke VIO VIO @) o
d

= /Q*(KE (Ugr)e; Ugk)e) 2@ 277

= '/*((Ung)g;(ng)g)m(Q) (27}‘)3
= (Kgege)rewmsy = 0,
because of (H2). o

The proof of Lemma 3.4 is based upon the following result that we shall use several times
in the sequel :

Lemma 3.5 Let (uy(&;))n>1 be a Hilbert basis of Lg(Q) for almost every & in Q*, such that
& = un(&-) (that we shall simply denote by uy, in the following) belongs to H. Then, if we
set @, = U*u, and, for every p in Z3,

dg

Onp = Tp Pn = / ezpfun(§7 gj) W’ (329)

the family (0np)n>1pezs i a Hilbert basis of L?(R3).

Remark 3.3 Before giving the proof of Lemma 3.5, and then the one of Lemma 3.4, let us
first note that such a basis exists. Indeed, if (uy,) is a given Hilbert basis of L?(Q) consisting of
Q-periodic functions (think, for example, of u, = ™% n € Z3), then u, (& x) = €€ u, ()
provides the desired example.
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Proof of Lemma 3.5 : Let (uy), € X and (¢, )n,p be defined as in the statement of the
above lemma. We first show that the (¢yp),>1 pezs form an orthonormal family in L?(R3).
Indeed, let n,m > 1 and let p,q € Z3. Then, using first the definition (3.19) of the Hilbert
scalar product on H, the definition (3.29) of (¢);, ;, next the orthonormality of u,(¢;-) and

um(&;+) , and finally the fact that
de
ip-§ > _§
'/* € (271_)3 p,0>

for every p € Z3 (6. being the Kronecker symbol), we have

* d
| et tnienerade = [ (e Uendhza g

o ye dE /
_ i(p—q)-€ > ¢ * (&x)d
= e un (&5 7) U, (&) do

i(p—q)¢ _9€
= 5n,m'/*€(ﬁ q)ﬁm = Onm Opg-

We check now that the Parseval identity holds, thus proving our claim. Indeed, let ¢ €
L?(R3?), then

2
S Y | v
n>1 p623 JR3
d¢ |?
- % |[ ns e gy
n>1 pezs 1@
e dede
= P EEN(U)es un(é5)) 120y (U)eriunl€5))52 0) Tomr6
nZZ] pga //Q*XQ* le@ ' La(Q) (2m)©
d¢ 2
=Y | o 0 viten) da 330)
Jq- (2m) JQ
n>1
dg
— 2
100l oy (3.31)
= [l7ems) (3.32)
where (3.30) follows from the Poisson formula, (3.31) from the Parseval identity, and (3.32)
from (3.20). &

We may turn now to the

Proof of Lemma 3.4 : Let (uy), and (¢p p)n,p be defined as in Lemma 3.5. With the help
of Lemma 3.5, and using first the Parseval Identity in L?(R?), and then the definition of p as
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the kernel of K, we have

//me lo(z; )2 dedy = /dTZ 3

n>1pcZ3

—=>»> 1K @npll72(0)

n>1pecZ3

= Y IKeali2my (3.33)

n>1

2

/ (z5y) on(y +p) dy

- Z/ ”K§“n & ||]2 ( )a (3.34)

n>1
where (3.33) comes from (H1), and (3.34) from the definitions of K¢ and of the scalar product
on H. From (3.34), we obtain in particular, that > -, [[K¢un(&; -)||2L2(Q) is finite for almost

every £ in Q* as soon as (3.25) holds true; this is precisely the definition of K¢ as an Hilbert-
Schmidt operator on LE(Q) (see, for example, [44]), whose kernel p(¢; -; ) belongs to L?(Q x Q)
for almost every £ in Q*. Therefore, (ii) holds. If we go back to (3.34), we now have

/Z|K§Un )7 (7_‘_)3_/* s // p(& w3y)|? dady,

n>1

whence (3.26). It is easily seen that the same proof gives in fact the proof of the converse
implication (ii) = (i) since at each step of the proof we have argued by equivalence.

Let us now prove (3.27) and (3.28). For almost every y fixed in @), we know from (3.25)
that p(-;y) lies in L?2(R3). Next, (3.27) and (3.28) are two equivalent formulations of the
claim that p(&; z;y) is obtained by applying the transformation U in z to p(z;y). By the way,
let us note that, because of (3.20), this claim provides another proof of (3.26). Let us check
that (3.27) holds. Let ¢ be fixed, say in S(R3), we check successively that

(UKp)e(z) = e T (Ko)(x + k)

M &

6““'5/ p(z + k;y)e(y) dy
R3

Bl
w

€Z

Il
g

eik-ﬁ/ P (i m + k)oly) dy

keZ3 R?
_ Z evzk-g/ 2 Z e 5 (41 T+ k) (Up)e(y) dy (3.35)
kcZ3 Q* 7T Q 1€Z3
d !/
_ Zeka/ 5 > e p(z+k—Ly)(Up)e(y) dy
keZd ’ 9 lezs
. d e el
S ezk-£/ ¢ /e“f'f > e (w4 1y) (Up)e (y) dy
kcZ3 1€Z3
— > e p(a+ ki y) (Up)e (y) dy (3.36)
7@ ez

= Ke(Up)e(r) = /Qp(f;w;y)(Uso)s(y) dy,
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with (3.19) to deduce (3.35), and the Poisson formula to obtain (3.36). This proves our claim.
¢

We are now ready to state the definition of the admissible “periodic density matrices” we
shall work with.

Let K = fQ* K¢ = i ) be a self-adjoint operator in L?(R?) satisfying (H1). We shall say

that K is an admissible periodic density matriz if K satisfies in addition to (H1) the following
properties (H2)—(H4) :

(H2) 0< K < 1,
(H3) for almost every & in Q*, K¢ is a trace-class operator on LE(Q), and

_dg

(H4) for almost every & in Q*, —A¢ K¢ is a trace-class operator on LE(Q), and

dg
/* TI‘LE(Q)[_Af K&] W < 400, (338)

where —A¢ is a notation for the operator e (—Ap.,) e acting on L? £(Q), and with —Ay,,
denoting the Laplace operator associated to periodic boundary (’OD(‘llfIODS in Q. Actually,
—A¢ is equivalently defined by —A = fQ* —A¢ % according to the definitions (3.21) and
(3.23) of the Bloch waves decomposition (see [45]). The set of all admissible periodic density
matrices is denoted by K. We collect in the forthcoming Proposition 3.2 various properties
of the periodic density matrices in I, that have been proved in the course of this section.
But, before that, let us introduce some functional spaces : for every ¢ in @*, and for every
1 <p < oo,

L{(Q) ={p € L[, (R®) [ 7 - p = &' FCp,V | € 2%},
and

HE(Q) = {p € Hiy(RY) [ -0 = e,V k € 27}
Proposition 3.2 Let K belong to K. Then,

(i) K satisfies the equivalent properties given in Lemma 3.4.

Let p(&;+;-) € L2(Q*;Q x Q) denote the Hilbert- Schmidt kernel of K.

(ii) For almost every & in Q*, there exists a complete set of eigenfunctions (un(&;-))n>1 of
K¢ in LQ(Q) corresponding to the non-increasing sequence of eigenvalues 0 < A\, (&) <1

((’mmfed with their multiplicity) such that u,(&;-) € H](Q) & un(&;-) € H, and such
that

p(&ziy) = YA€) un(& ) un(&y),

n>1

for almost every £ in Q*.



4. THE REDUCED HARTREE-FOCK MODEL 25

(iii) For almost every € in Q*, x — p(&; ;1) is periodic, non-negative, belongs to L. ..(Q),
and may be written

p(& @ x) Z)\ ) [un(&:2)2  ae. on Q.

n>1
Hence, TrLg(Q)Kg = / p(& x;x) dx. In addition, we may define p(x;x) by
JQ

plaia) = [ plima g (3.39)

and p(z;x) is a Q-periodic, non-negative function in L} ..(Q). And, we also have

3 d¢
o Trpz (g Ke 2n) :/ W/ p(&; w5 w) dx

= o T

(3.40)

/Q p(z;x)de = 1.

(iv) (H4) writes

Trrz)l-
Jo. i@

/Z ;jf)g /szun(§;$)2d$ < oo, (3.41)

Let us now turn to the thermodynamic limit problem for the RHF model.

4 The Reduced Hartree-Fock model

This section is devoted to the proof of Theorem 2.2 which has been stated in Section 2. It
is organized as follows. We begin with the hardest part of the work in Subsection 4.1, which
consists in verifying that the lower limit of the energy per unit volume may be bounded from
below by the periodic RHF model. Subsection 4.2 is then devoted to the proof of Theorem 2.1;
that is of the well-posedness of the periodic RHF model. At last, with a minimizer of this
periodic model at hand, we are able to check in Subsection 4.3 that the upper limit of the
energy per unit volume may be compared from above by the periodic RHF model.

4.1 Lower limit of the energy per unit volume

HF
In this section, we bound from below the lower limit of L ‘A‘ as defined in (2.10) (2.11) by

the energy of the periodic RHF model (2.17)—(2.18). For the sake of clarity, let us recall here
the definitions of these problems :

1
IRIF = inf{E,}\mF(K) +5UN K € ICA},

BRI (K) = T[(-A — VAK] + 2 D(p,p):
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per per

TROE inf{ERHF(K) K € IC},

EJNTT(K) = o Trpzg) [~ AK&] / Gp+ Dn(p, p),
where the meaning of p(z;x) is made precise in Proposition 3.2.

Of course, our argument will still apply mutatis mutandis (this is even simpler) to the
smeared nuclei case (see (2.12), (2.19), (2.20)). We concentrate ourselves in the sequel on the
point nuclei case.

We shall use in a crucial way the fact that the RHF functional Ef"(K) is convex with
respect to the density matrix K, when K belongs to the convex set K, for any A C Z3.
Indeed, this convexity property will allow us to use the ~-transform trick that we have
previously applied to the TFW model in [11]. Let us emphasize the fact that, since we fail
in obtaining local bounds on the electronic density in the RHF model (say, for example, L>
bounds on p, independent of A), this is the only method among all the methods presented
in [11] which seems to go through to the RHF model.

The sequel of this subsection is devoted to the proof of the following

Proposition 4.1 Let A be a Van Hove sequence. Then,

RHF M

> RAF 2
&2

hm 1nf

where IpP;}TqF is defined by (2.17) (2.18).
Proof of Proposition 4.1 : From now on, we shall denote by K a minimizer of IfHF, by
pa(+;+) its Hilbert-Schmidt kernel and by px = pa(z; ) the (unique) corresponding electronic
density. In particular, using the fact that K, admits a complete set of orthonormal eigen-
functions (¢n),>1 belonging to H'(R3), associated to the eigenvalues 0 < p, < 1 (counted
with their multiplicity), we may write

n>1

(@:2) = 3 paltnla)

n>1

and

where, here and in all that follows, we have on purpose omitted to mention the dependence
of the u,’s and of the v,,’s on A, in order to simplify the notation. Let us recall that

e K = 3 pn / ()2 d = | A, (4.1)
n>1 /R3
and that
0 < Trrgs)[-AKal= Z,un/ Vi |>dz < C|A| (4.2)

n>1



4. THE REDUCED HARTREE-FOCK MODEL 27

thanks to (3.10a). Generally speaking, the idea of the strategy detailed below, and which
draws its inspiration from [11], is the following. We shall build a particular convex combination
from the operators K, which is more or less a minimizing sequence of I}\QHF, but which
converges to a periodic density matrix, as A goes to infinity. Moreover, this periodic density
matrix will turn to be a minimizer of IzﬁﬁF‘ By analogy with the definition of the ~-transform
for functions (see Definition 3 in Section 2), we set

- 1
Ky =— Z e - K- Tg. (4.3)

Then, it is easy to check that Ky belongs to K, that the Hilbert-Schmidt kernel of K, is

1
| keA

S ) = L

pA( aU) |A
while pj (7; ) coincides with the usual ~-transform of p, as introduced in [11]. In particular,
K\ also admits a complete set of orthonormal eigenfunctions (,,),>1 belonging to H'(R?),
associated to the eigenvalues 0 < A\, < 1 (counted with their multiplicity), and, therefore, we
may write as for Ky

Pa(3y) = Anton () 5 (1)

n>1

and

;o) = 3 Anlon ()]

n>1
Of course, the analogues of (4.1) and (4.2) remain true for K.

The proof is organized as follows. We first check that the sequence K, defined by (4.3)
converges in a sense to be made precise later to some operator K belonging to K; that is, to
a periodic density matrix (Step 1). Moreover, using the two facts that y/py is bounded in
H! ..(R?) (Corollary 3.2) and that its limit is necessarily periodic (Lemma 3.2), we already
infer that \/pa converges weakly in Hll()C(R3), strongly in LIPOC(R3), for every 1 < p < 6,

and almost everywhere on R? to \/ﬁ, with p being Q-periodic, non-negative, and such that
\/Z € Hg,er(Q). The second step, which is much more involved, consists in verifying that the

limit p of the density pp associated to IZ'A is also the Q-periodic density which is associated
to the periodic density matrix K according to (3.39) in Subsection 3.2, Proposition 3.2—(iii)
(Step 2). Finally, we bound from below the lower limit of the energy per unit volume by
EﬁfF(IN() (Step 3), thereby concluding the proof of Proposition 4.1. Let us already say, at
this stage, that thanks to the proof of the upper limit (and thus of the limit), of the energy
per unit volume we shall finally deduce that K is a minimizer of Ilﬁ;’;{ Fand therefore p is
simply pper, with p,e,. denoting the unique periodic electronic density that corresponds to
any minimizer of IzﬁﬁF' In particular, the whole sequence \/,57\ converges (and not only a
subsequence) and its limit is independent of the choice of the Van Hove sequence A.

Step 1: We first check that the sequence I?A converges to some operator K belonging
to the set of periodic density matrices IC, which is defined through properties (H1)-(HJ) in
Subsection 3.2 (equivalent to Definition 2 in Section 2).
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Since the sequence of operators Ky is ‘bounded in operators norm, we may extract a subse-
quence if necessary in such way that K converges to some bounded operator K in L?(R?)
for the weak convergence of operators; that is

(Kag; ) — (Kp;9p)  as A — oo,

for all ¢ and 1 in L?(R?). In particular, K is a self-adjoint operator in L2(R3) and 0 < K < 1.
Therefore, K enjoys (H2).
Let us check now that it also satisfies (H1); that is, let us prove that

a) K commutes with the translations which leave Z3 invariant.

Let 7 be such a translation. We fix ¢ and 1 in L?(R?), and we intend to prove that

([K, 7], %) 12 (rs) = 0.

For this purpose, we make use of a standard argument of [11] which is based upon the fact
that the sequence A is a Van Hove sequence. We just outline this argument here. We have

_ 1
[Kp, 7] = W(ZTkKATkTZTTkKATk>

keA keA
1
= W( Z TT_p KT — Z TTkKATk>.
keTA\A keA\TA
Hence
~ A\ TA|
([KA, Tl ¥)2msy| < TTA IKAll Nlell2 sy 1912 ms)

= o(1)
as A goes to infinity. As the left-hand side converges to ([I?,T]gp,qp)Lz(Ra), this shows the
expected invariance.

According to the results and the notation of Section 3.2, we may write K= [ I~(§ L
-~ " JQ (2m)
with K¢ being a self-adjoint operator in LE(Q) such that 0 < K¢ < 1, for almost every £ in
Q"
Having checked that (H1) and (H2) are satisfied by K, we next want to verify that K
satisfies (H3). Namely, we now want to check that,

b) for almost every £ in Q*, the operator IZ'E has a finite trace on L?¢(Q), and

dg
Try2 K
Jo- @7 (2m)3

=1.

According to Lemma 3.5 in Subsection 3.2, we denote by (uy(;-))n>1 an arbitrary Hilbert
basis of Lg(Q) for almost every £ in Q*, and by ¢, , = 7, ¢, the corresponding Hilbert basis

of L?(R?). (Note that in fact, since K and the INQ’S are non-negative, it would be sufficient
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to make the following argument for one given basis — see [44].) Then, we check successively
that :

1 1
T LT
n>1pecZ3
1 1
> W Z Z(KASOn,p; (pn,p) — Z W Z(Tp . KAT,p *Pns ‘Pn)
n>1peA n>1 pEA
= ) (Kagnign), (44
n>1

the inequality in the above string of equalities coming from the positiveness of K. Then,
because of the weak convergence of K\ to K, (I~(A<pn; ©n) converges to (IN(gon; ©n), for every
n > 1, as A goes to infinity. Now, since 0 < I?A, we know that the terms of the series
appearing in the right-hand side of (4.4) are all non-negative. We may then appeal to the
discrete version of the Fatou lemma to infer that ) -, (I?tpn; ¢n) < 400, and that

liminf > (Kagnion) > Y (Koni on)-
im in Y (Kawnien) > Y (Kenipn)

n>1 n>1

Owing to the definitions (3.21) of the notation K = fQ* I~(§ (Q(ff)g and (3.19) of the scalar

product on H, we have

Z([?(’O":’(’O") - Z/Q*((UI?S%)&;(USOn)g)L?(Q) (;f)?
_ - % d
) T;./Q*(Kf“”(a');“n(f?'))w@) (275)3
— [ S (Reun(& )il Nz (2d§)3
“n>1

In particular, collecting with the above string of inequalities, we already know that, for almost
every £ in Q*, K¢ is a trace-class operator on LE(Q) and that

- de

Moreover, denoting by p(&;x;y), the Hilbert-Schmidt kernel of I~(§, we may give a sense to
p(&; 2; ) as a non-negative periodic function in L'(Q), such that TrLE(Q)KE = fQ (& s x) de.

In addition, thanks to (4.5), we may associate to I~(, the non-negative Q)-periodic density p,

which is defined by pz(z;7) = fQ* p(&; s x) %, and which belongs to L'(Q). In order to

conclude the proof of (H3), it remains to show that

~ df
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To prove this claim we shall actually prove in Step 2 below that

. ~ dg
p(z) = pg(z;2) = /*P(ﬁ;fﬂ;m) @n)?
for almost every z in @, where p is the limit of py. Whence (4.6), thanks to (3.16) in
Corollary 3.2.

(4.7)

Admitting (4.7), for a while, we now claim that K satisfies (H4) i.e. that

c) for almost every £ in Q*, —Agi?g is a trace-class operator on L2§(Q), such that

by proving that

hmlnf TI“L2 R3)[ AKA] > HLQ(Q)[iAE I?f] d

Asoe [A] = Joo 2r)3 (4.9)

The proof of (4.9) follows the same lines as the proof of (4.5). Indeed, let (u,(&;-))n>1 and
Ynp = T—p ¢n be defined as before, with the additional assumptions that (u,(&;-))n>1 €
Hg(Q) for almost every ¢ in Q*, and that the ¢, ,’s belong to H'(R3?). Then, for the same
reasons as before, we find

1
WTFB(R%[*A Kyl = |A| Z Z (Ka (— ©n,p; (*A)l/2 Pn.p)
n>1 pez3

> D (K (—0) P (—A)'2 o).

n>1
Then, thanks to the weak convergence of IZ'A to f(, we have, for every n > 1,
lim (Ka (—A)"0n; (~A)1% ¢,)
A—oo
= (K (=2)P0,; (=08)2 ) = (=2)2 K (=2)pns o).

Moreover, Fatou’s lemma still applies since, on the one hand, for every A and n, we get
(=A)Y2 Ky (—A)'20,: ¢,) > 0 ; while, on the other hand, we know from (3.10a) in Propo-
sition 3.1, that WTrp(Rz)[ A K] is bounded independently of A. Therefore, passing to the
lower limit as A goes to infinity in the above inequalities, we get first that

Z(fAIZ'gpn;gon) < +o0,

n>1
and next, that
1
hrggf|A|TrLsz)[ AKpl > hrnlnfz A2 Ky (=AY 0 00)
> Z(f?(—A)l/%n;(—A)l/%m
n>1
- /Z(f( (~)"2 (€5 ) (~ ) 2 un (€ D1 20)
Jor & 3 3 n\&: ) 3 ni\ss )12 (Q) (27)3
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since (—A)Y2 = [, (—A¢)/? % Hence (4.8) and (4.9).
We turn now to the proof of (4.7)(thereby proving (4.6)); that is, the fact that

Step 2 : The limit of pa, p, and the periodic density associated to IZ', which is defined
~ d ..
by pp = fQ* (& m;x) ﬁ, coincide.
We are first looking for

a) A priori estimates on pj (z;y).

Since K?\ < Kp, we have

pa(z) > /R3 pa(ziy) paly; x) dy = /R3 loa(z;)|? dy (4.10)

almost everywhere on R3. Thanks to (4.10), we first check that

Pa(z) > /R Pl dy, (4.11)
which in particular implies that
pa(z:y) is bounded in L?*(Q x R?*) N L*(R? x Q) (4.12)

independently of A, for p(z) is bounded in L'(Q). Indeed, because of (4.10), we check
successively that

1

pa(z) = WZPA($+k§$+k)
keA
1 / 2 1 2
> — loa(z + K y) " dy = — / loa(z + Eiy + k)" dy
N 2 Jo Py

> / oA (5y)* dy,
R3
by convexity. We prove now that
pa(z;y) is bounded in L2(Q; H;(Rg)) N LZ(Q; HI(R?)) (4.13)

independently of A, or, more precisely, that
COAN/2% (N2
dy | [(1=A)"palz;y)|" dz < C, (4.14)
Jg ~Jms

where C denotes here and below a positive constant that is independent of A. We emphasize
the fact that, in the following, we shall use the notation (1 — A);;/Qﬁ,\(-, -) for the Schwartz

kernel of the operator (1 — A)Y/2K,, which is also don>1 A [(1— A)20,1() @ (-). Indeed,
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we have

[av [ 102 Bty o - / ay [

AZ/dU/m (1-A I/QPA(TJrk y+ k)| dz

keA

= Loy [0 et o
Al Jreay 7 Jrs

1
< L dy/ (1= A pp (219)[2 de
A s ™ Js

-/
‘A‘ R3xR3

1
- /R I A) @) de < T ((1 - A) Kl
n>1

2
—A)Ppp(z+ky+ k)| do

[A] £

IN

2

Z pnl(1— 8) Py (@) g (y) | dandy

The first inequality is deduced by a convexity argument, and the last one comes from (4.1),
(4.2) and the fact that 0 < u,, < 1. Finally, we conclude with the help of (3.10a) in Propo-
sition 3.1. An easy consequence of (4.13) is that pa(z;y) is bounded in H! ..(R?® x R?),
thus, up to a subsequence, it converges to some function p(z;y) weakly in ]OC(Rg x R%),
strongly in LfOC(R?’ x R3), for every 1 < p < 3 (by the Rellich theorem for bounded domains
of RY), and almost everywhere on RS. Actually, because of the weak convergence of Ky to
K, p(z;y) is nothing but p(z;y), the Schwartz kernel of K. Note that, in particular, we ob-
tain from (4.12) (respectively (4.14)) that, up to a further subsequence, p (z;y) (respectively

(1 —A);/Qﬁ,\ (z;y)) converges to p(x;y) (respectively (1 —A)w/Qﬁ(x y)) weakly in L2(Q, x R;)

Therefore, we have
/ dfc/ |p(z;y)|* dy < +o0,
Jg Jms

/dy/ (1= A2 p(z; )| dz < +o00.
JQ JR3

and

The first bound provides another proof of the fact that I?f is Hilbert-Schmidt on LE(Q) for

almost every £ € Q*, with kernel p(¢; z;y), and that p(z;y) = fQ* p(&xyy) %, by using
Lemma 3.4.

Our next step consists now in showing that
(1 — A2\ (z +y,y) is bounded in L (R3; L (@) (4.15)

This claim will be a consequence of the following two bounds. First, since p, is bounded in
Ll . (R?), we clearly have

unif

sup Z An / lon(z)*dz < C. (4.16)
teR? 57 t+Q
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Next, we now prove that

sup »_ An / (1= A2, (z)]? < C. (4.17)
teR? 54 +Q

Indeed, using the fact that the self-adjoint operators (1 — A)?EA(1 — A2 and (1 —
A2 K\ (1—A)'? are positive and trace-class with Hilbert-Schmidt kernels being respectively

defined by 32,51 pal(1 — A)V240,](2) [(1 — A)'2pn]* () and 35,51 Aal(1 — A)2] () [(1
A)'2p,1*(y), we may observe that

> Al (1= 2) g () ‘A‘Zunl—m%(wk)\

n>1 n>1

almost everywhere on R3, thanks to the definition of K. Therefore, for every ¢ in R?,

1/2 2 gy — A)1/2 2 g
Sohn [0 = S [0 ) )

n>1 n>1
1
< un/ 1— A2, (2))? da
|A|Z 'Rg\( ) (2)]

<:C7Dﬂ- (1-A)K,] < C,

because of (3.10a). Let us now prove (4.15). For almost every = in R?, and by a repeated
use of the Cauchy-Schwarz inequality, we obtain

/Q(l—Au/?ﬁA(Hy,y)dy

N /;A I/QWn](waLy)sOZ(y)‘dy
= /(;A (1= 2) Pz +y) ) (;A on(y 2)
< ('/QT;An|(1—A)]/290n(x+y| dy) (/;A oy dy)l,

and (4.15) follows, thanks to (4.16) and (4.17).
At this stage, we observe that (4.14) in particular yields

(1 —A)2pr(xz +vy,y) is bounded in L2 (R3; LZ(Q)) (4.18)
Therefore, by a standard interpolation argument,
(1= A)L?pa(z +y,y) is bounded in L(R?; LE (Q)), (4.19)

with 1—1) + 1% =1, and for every 2 < p < 4o0c. In particular, extracting a further subsequence

if necessary, we may assume that (1 — A)i«,ﬂﬁ[\(m + y,y) converges to (1 — A)i«,/2

weakly in L} (R?; LZI(Q)), for every 2 < p < +oc.

plr+y,y)
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b) Proof of (4.7).

Let 6 be a continuous real-valued function, which is compactly supported in the unit cube
Q, and let us denote 6y = >, .1 0(- — k). (Note that 65 has compact support in I'(A).) Then,
on the one hand, we have

1 1
—Trr2gs [KAHA] pAHA:/ﬁAe,
A[TEED AT, Jo
and, thus,
. 1 ~
Al;ngo WT‘rLQ(Ra)[KA N :/Qp('r)ﬁ(fr) dx. (4.20)

On the other hand, we now prove that

1 - d
lim WTTLZ(R-"‘)[KA O\ = /Q dx '/* p(&x;x) O(x) % (4.21)

A— o

Since 0 is arbitrary, comparing (4.20) and (4.21) completes the proof of (4.7). We now prove
(4.21), and we begin with recalling that the self-adjoint operator (1 — A)Y2K (1 — A)Y/? is
Hilbert-Schmidt (and even trace-class) on L?(R?), with kernel (1 — A);;/2 (1—-A)y 12 pa(z,y) =

S st Hal(l = A)V24,](2) [(1 — A)Y24p,)*(y), for Tryzga[(1 — A) Kx] < +00. Besides, due

to the fact that #, is a continuous function with compact support, it is a known fact that the
self-adjoint operator (1 — A)~1/20,(1 — A)~/2 is Hilbert-Schmidt on L?(R?), whose kernel
is denoted by ©, (z,y). With these observations, we write
TI“LQ(Ra)[KA 91\]
= Trpme[(1— A)2KA (1= A)V2 (1= A)"20,(1 — A) /2

= //R . (1= A1 = A))?pa(z,y)] Orlz,y) dody
'3>< 3

= Zun/ dz[(1 — A)*4p,) () ([R On(z,y) [(1 — A) 2] () dy) (4.22)

n>1

thanks to Fubini’s theorem. We shall now use the explicit form of the Hilbert-Schmidt
kernel of (1 — A)~1/265(1 — A)~/2. Indeed, recalling that, by definition of (1 — A)~1/2,
FI1—A)29](z) = (14 |2|?) /2 Fp(z) (where F denotes the Fourier transform), it is not
difficult to verify that, if ¢ is, say, in the Schwartz class, we have

(1=A)""2p =G %o, (4.23)
where G is a function in L' (R?) whose Fourier transform is simply the function (1+|z[?)~"/?
(e LP(R?), for every 3 < p < +oc). The function G is a special kind of Bessel functions,
and, from [53], for example, we know that G is a non-negative radially symmetric function,
such that

1
Gi(z) < Cy exp(fi \x]), for |z| large enough,
and

1 1
Gl(.’l}):CQ?‘i‘O(?P), as |z| =0,
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for some positive constants € and Cy. In particular, G actually belongs to L3/%>®(R3) N
LP(R?), for every 1 <p < 3.

Therefore, for any continuous function 4 with, say, a compact support, the Schwartz kernel
of (1 —A)~1/29(1 — A)~1/2 may be written as Jra Gi(z — 2)9(2) G1(z — y) dz.

Then, by definition of G4,

[ osten = 8,1 ) dy

= (1=2) P00 (1= 8) 2 ([0 - 8) ) ()
= (1=2)0097) = Gix(Ontn):

Thus, using again Fubini’s theorem,

Zﬂn/ dx[( )]/2¢n](1’) < 5
- //RsngG o) (3 (1 = A) P20 1(0) ) )

n>1

= [ Gl 0w ) s, dody
R3xR3

Onlz.y)[(1— A2, () dy)

Therefore, we deduce, comparing with (4.22),

1

1
T [Ka O] = // G (x — )0 (9)(1 — A2 (2, y) dady
A A /) wooms

1
B W / &l RS Gi(z — y)0a(y)(1 — A)}*pa(w, y) da

_ Z/ Ay [ Gale k= y)0)(1— A)pa(ry + ) do
keA

- Az/dy/RgG]x‘ ()1 = A)Y2pa(z + b,y + k) dz

keA”

N /dy/ Gi(z —y)0(y)(1 — A)y/*a (e, y) da
Jg 7 Jrs?

- /dy/ G (2)8(y)(1 — D) ?Br (x + . y) de.
Jg ~JR3

We now make use of the two facts that (1—A) 22 pa(z+y,y) converges to (1—A), V25 o(r+y,y),
weakly in, say L1(R?; L4/2(Q)), and that G(z)0(y) belongs to Ly (R?) x Lj(Q) Therefore,

lim ! T‘I'[Z(R'Z)[KA 9/\] == / dy/ 1—A)1/2 ($+y y)d
A—oo [A] R3
- / dy / Gi(z — 9)0) (1 — A5z, y) do
Q R3

-

dx /Q*H (& x) o)

o
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Indeed, we first observe that the self-adjoint operator (1 — A)~1/2 is bounded on L?(R?) and
commutes with the group of the translations of Z?. Therefore, we may apply the abstract
Bloch wave de(’ompoqi‘rion (that is explained in Section 3.2) to (1 — A)~'/2, and we have

(1—A)"1/2 = fQ* - ]/2 (2(]5)3, with the operator (1 — A)g]/2 being defined by

(U(l - A)”%)£ () = (1 - A) P (Up)e = '/Q Ge(z —y) (Up) (y) dy

thanks to (4.23), for every ¢ in L?(R?), and for almost every z in Q and ¢ in Q*, and where,
according to (4.23),

Ge(t) = Y e "Gt + k).
keZ3

Note that, from the definition of (—A)g¢, (1 — A 21— Ay Finally, we conclude
3 I3 3
as follows '

/ dy [ Gi(x— )81 — A)Y2(s,y) da
Q R3

/ dy/ dx/*Gg 2 —1)[(1 = A)25)(E: 1) (Qdé)
/ dun; //QXQ* ez — YO —A)E 2 (£, )] U (€, 1) (dfd)T
_ WZ //QXQ*H(y)An(E) uy, (€, y) (/Q Ge(z—y)(1 — A);/Qun(£,$) dx) (d;:)%

>1

Il
\

W)y S / €) [un (€. )2 (Qdf)g

n>1

) "
_/Qe('l/) dU/*p(faUaU) (271.)‘%

This completes the proof of (4.21).

The kinetic energy term being settled with (4.9), we now turn to

Step 8 : Lower limit of the sum of the electrostatic terms. Conclusion.

We shall first rewrite the sum of electrostatic terms in a more convenient (and equivalent)
manner which has been introduced in [11, Section 3.4]. We shall only sketch the argument
and refer the reader to [11] for more details. The electrostatic terms in the energy are the
following

1 1 1 1
~Trra(re) [VaKa] + 5D (pa, pa) + 5Un = = / Vapa+5D(pa,pa) + 5Ux (429)
R

Denoting by fa(z) = > ,ca (ﬁ — fQ %) =V *XF(A)*ﬁa we rewrite the sum of the
electrostatic terms as follows

1 1 1
— li x) — —
5 > lim [fA(T) mz|] t3 /F(A) fa

ZEN m;ﬁz

1
- / fapa + 5 D(xra) = pasxr) = pa). (4.25)
Jray
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We next remark (see [11, Chapter 2]) that we have

1 ~ 1
I I ——— = lim i g) - —| =M+d 4.2
A \A\Z TLHL [ mz|] Ao w‘fé [fA(T) |.7;] +d, (426)
x#£0

CE z

where d is some constant which is related to our choice of normalization for the potential G
and which is defined in [11]. In addition, we have

1 = l = = 4.2
Ainoow/ fa = Tim /f/\ /G+d) d, (4.27)
and
1 ~

lim — [ faprn=d+ / G(y) ply) dy. (4.28)

A—oo |A| R3 JQ
Therefore, if we prove that

hm inf - ( (A) = PAXT(A) — PA) > DG(ﬁaﬁ)a (429)

A—00 |A|
we shall easily deduce from (4.26), (4.27), (4.28), and the formulation (4.25) of the sum of
the electrostatic terms (4.24) that

1 1 1
lim inf — <TI“[VAKA] + ED('OA’ pr) + EUA>

A—oc |A|

> - /Q Glw) o) dy + 5 D7) + - (4.30)

We now prove (4.29). Let us define g = (xpa) — pa) * ﬁ It is a standard fact that

1 1 -~
POy —easxem) —ea) = T/ Vgal? > / IVaal®. (4.31)
Al Al Jra Q
From the bound (3.10e) in Proposition 3.1, we deduce
[ vane<c.
1Q

where gy is defined, as usual, by gy = ‘A‘ > kea 9r(-+k). Thus, Vg, is bounded in L2 ;(R?)?
independently of A. Therefore, extracting a subsequence if necessary, we may assume that
there exists i in L2 . (R?)?, such that Vga converges to h € L? ..(R*)?, for the weak conver-
gence in L2 (R?)?, and curl h =0, in the sense of distributions. Moreover, from Poincaré’s
theorem, there exists g in D'(R?) (which is uniquely defined, up to a constant), such that
h = Vg, still in the sense of distributions. In addition, since g satisfies

—Aga = —div(Vga) =47 [Xr) — pal,
we deduce that ¢ is a solution to

~div(V§) = —Ag=4x [1 - 7, (4.32)
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in D'(R?) (see [11]). With (4.31), we obtain

1
hAmlnf D(XF() PA> XT(A — pA) /|Vg|

—oo |A]

Now, we notice that we already know another solution to (4.32), namely

/GT )1 — B /GT Bly) dy, (4.33)

thanks to the normalization (2.14) on G. The function g is periodic and satisfies

/|v9|2— / _AG- = De(p.p),
e Jo

thanks to (4.32), for fQ g = 0. We are going to show that

/ v > / Vgl (4.34)
Q Q

For this purpose, we first remark that dyg — d1g (where d; denotes the first derivative with
respect to the first coordinate x; of R?) is an harmonic function, for § and g are two solutions
to the same Laplace equation (4.32).

Now, both ;¢ (as the limit of & gx) and 0 g (by construction, see (4.33)) are in L2, ,.(R?).
Therefore, d1g — 01g is an harmonic function which belongs to Lunlf(R3)’ and thus is a
constant, that we denote by a; (use for instance the mean-value inequality). The same
argument applies to the first derivatives with respect to the coordinates x5 and z3. Hence we
obtain

g_g:a'$+ba

where a = (a1, as,a3) and b are two fixed vectors of R?. It follows from this equality, that

/|v.a|2 — /|V(g+a-m+b)2
Q Q
/|Vg|2+/a|2+2/a
Q Q Q
- /|v.q|2+/ af?

Q Q
> / Vgl

JQ

since fQ a-Vg=a- fQ Vg = 0 because of the periodicity of g. The inequality (4.34) follows,
from which we deduce easily (4.29) and (4.30).
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At this stage, we collect (4.9) with (4.30) to obtain

fmint A~ i <TrL2(R3) [(—A = VA)Ka] + LD(paspn) + lUA>
Aoo  [A A—oo [A 2 2
= ), Tl A K¢ % - '/QGﬁ+ %Do(ﬁ,fﬁ + %
= BUTR)+
> [ % (4.35)
This concludes the proof of Proposition 4.1. &

Before turning to the study of the upper limit of the energy per unit volume, we can
anticipate a little bit and assume that we have already proven

RHF
Iper

M 1
4+ — > limsup — I, (4.36)
2 A—oo ‘A‘

which will be the purpose of Proposition 4.2 below. It will follow from the comparison of
(4.35) and (4.36) that all equalities in these strings of inequalities (4.9), (4.30), (4.35), (4.36)
are indeed equalities. In particular, we shall recover

dg
(2m)3’

o1 ~
lim —TTLQ(Rs)[*AKA] == TrLg(Q)[iAf Kf]

(4.37)

and we shall also obtain that K is a minimizer of IpP;)TqF.

In order to prove that the upper limit behaves in the expected way, we shall make use of the
minimizer of (2.17) (it is not stricto sensu necessary, as we might use an almost minimizer).
Therefore, we devote the next section to the study of problem (2.17), and in particular to the
proof of Theorem 2.1. We shall come back to the proof of the upper limit (4.36), and thus
conclude the proof of Theorem 2.2, in Subsection 4.3.

4.2 The periodic RHF problem

We begin this section with the proof of Theorem 2.1, that we recall here for the convenience
of the reader.

Theorem 2.1 (Well-posedness of the RHF periodic model)
The minimization problem defined by (2.17) (2.18), i.e.
I = inf{EMY(K) ; K € K},

per per

d¢ 1

RHF

Eper (K) = /* TI‘LE(Q) [_Afo] W - /QGP+ §D(;(,0,p),

(respectively in the smeared nuclei case by equations (2.19)—(2.20) in Section 2) admits a min-
imum. In addition, the minimizing density p(x; ) is unique and, thus, shares the symmetries
of the unique cube.
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Before we begin with the proof, let us at once remark that the argument we are going to
make will be also useful in the Hartree-Fock case for the proof of Theorem 2.3 in Section 5
below. As the Reduced Hartree-Fock model is convex, another strategy than the one we shall
use below could have been chosen. However, we have chosen on purpose a strategy of proof
that will be also valid for the non-convex Hartree-Fock model. This will simplify our task in
Section 5. Let us also remark that we only do the proof in the point nuclei case, and that
adapting our argument to the smeared nuclei case (2.19) (2.20) is straightforward. Let us
also mention at this stage that some of our arguments are similar to those used by E.H. Lieb,
J. P. Solovej and J. Yngvason in [34], where a close problem is studied.

Proof of Theorem 2.1
Let us consider a minimizing sequence K" for the minimization problem (2.17) (2.18).
For each n, the operator K™ may be decomposed into operators Kg’ We denote by p,, (&, z,y)

the kernel of K¢, and by on(z,y) = fQ* on(& z,y) % the Schwartz kernel of K,,, according
to Lemma 3.4. More precisely, we have, in view of Proposition 3.2,

EaT ,U Z)‘ ’) uéﬂ)(g’y)*

p>1

In the right-hand side, the index n, referring to the index in the minimizing sequence K™, has
been put into parentheses in order to avoid ambiguity with powers of u,. Since, in addition,
K¢ is trace-class on LE(Q), we may also define

n(&zm) = > A [ul (& 7)),

p>1

which is a non-negative, periodic function in L'(Q), such that TTI%(Q)K? = fQ pon (&, x, ) d.

Moreover, let us recall from Proposition 3.2, that the density p(x;z) which appears in the
definition (2.18) of the energy functional is also a non-negative periodic function in L'(Q)
(at least) defined by p(z;z) = fQ* on(& z,x) % Our first step consists in finding some

bounds, independent of n, on the operators K™ and on the functions p,(-,-) and p, (&, -, ).

Step 1: A priori estimates on the minimizing sequence

First of all, we remark that the following bound holds obviously
0< K¢ <1,

for almost every £ in Q*, which comes straightforwardly from Lemma 3.3. In view of the
decomposition of the operators Kg along their eigenbasis, let us rewrite the kinetic energy
term:

'/*Tr,%( [—A¢KY] dg/ ;x )'/Q|Vu§,”)(§,gc)2dxd§. (4.38)

Next, we remark that the constraint of charge 1, namely

dg
Trp o000 K2 -
Jo LE@)TE (97)3
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may also be written as

./*(d:) /”"f’”‘”’_/ 24

p>1

= /pn(x;x)dx = 1. (4.39)
Jq

Another consequence of this constraint is

/ // on (&2, y) | dady

A ZZA \/ ) ol

p>1qg>1
d§
= [ XN b g
p>1g>1 (2ﬂ—)
d
= [T Werg,
Q" p>1 2m)?
df
< [ Y = 1
Jor 222"y
whence
pn(€,z,y) is bounded in L*(Q* x Q x Q), (4.40)
or, equivalently, because of (3.26) in Lemma 3.4,
pn(z,y) is bounded in L*(Q x R3). (4.41)

(Note that actually pp(z,y) is bounded in L2 ..(R3; L?(R?)), thanks to the translation in-

variance.) We are now going to work on the energy functional. Owing to the convexity of the
function f — fQ V|2, and because of (4.39), we have

/ /* ;)( )|2%)1/22d$

[ 19, (o) s
Jq

p>1
/] o SO
A (&) Vul (¢, Q—d"”dg
< //M*M O] Ve (€0 s
_dg
= '/*TrLg(Q)[ A¢KY @) (4.42)

the second inequality being true since |V|f|| < |V f| for any complex-valued function f. Let
us now observe that

3/4 1/4
/ Dpale.w)da| < C Gl loalihlo, lonlliy,

C NGl ) VPl
C 1G] 12q) (1 + I\V\fnlle(Q))”“ (4.43)

IN

IN
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since G is L% on (Q (it has only a singularity like ‘]?‘) and [|pn[/z1(g) = 1, and where C' denotes
here and below some positive constant that is independent of n. Inserting (4.42) and (4.43)
into the definition (2.18) of the energy, and noticing that £D¢(-,-) > 0, we obtain that we
have, for the minimizing sequence K" ,

Vpn(z,z) is bounded in H'(Q), and thus in L(Q) 1 < p < 6. (4.44)

This can also be expressed by stating that

Trpg-AckZ]d = [[ S ADQ VU yPdode  (145)
JQ* S JQxQ* p>1
is bounded independently of n.

Using the Cauchy-Schwarz inequality as follows

e = || *p;A;”>(s)u;">(s,x)u;">(s,y)*(Q‘f)g
< (/. SN @ e o =) (. S o =)
= Vpulz,7) Vpuly,v), (4.46)
we obtain a direct corollary of the bound (4.44):
pn(,y) is bounded in LP(Q x Q), 1 < p < 6. (4.47)

Another corollary of these bounds is obtained by using the convexity of the function f +—

foxQ* |V\/7‘2 dzdf, it is
Vpn(€,2) is bownded in L(Q"s H' (@) (4.48)

Finally, a very useful bound is obtained from (4.45) by using the Lieb-Thirring inequality in
this setting. (This is an easy adaptation of the Lieb-Thirring inequality in the periodic case
given in the Appendix of [54] for finite-rank projectors together with the results of [39] for its
extension to general density matrices.) We have, for almost every & € Q*,

for some constant Cjy, which may be chosen independently of £, since £ lies in a bounded
subset of R3, and therefore by integration on Q* (since the left-hand side lies in L'(Q*)),

dé n 0
/Q* W/Qpn(f,m,m)wg dr < C o T2 (11— A)ekE] (2m)3”

This shows that

pn (&, 2, 2) is bounded in L3(Q* x Q), (4.49)

and concludes our first step, devoted to the a priori bounds on the sequence K".
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Step 2: Passing to the limit in the constraint

Let us first remark that, in view of the bound (4.40), we may assume without loss of
generality that the sequence p, (¢, z,y) converges weakly in L2(Q* x Q X Q) to some puo (&, 2, ).
According to the formal decomposition given in [45], and recalled in Section 3.2, we may now

define a self-adjoint operator K> on L?(R?), by K*® = fQ* Kee %, where K¢ is the

Hilbert-Schmidt operator on LE(Q) whose kernel is the function po (&, x,y). Another way
to state the weak convergence of p, to ps is to say that for almost £ € QQ*, and for any
self-adjoint operator L on L?(R?), such that L = fQ* Le¢ %, where the operators L¢ are
Hilbert-Schmidt operators on LE(Q), whose kernels L(¢,z,%y) belong to L?(Q*; L%(Q x Q)),
we have

Clearly, the operators Kgo satisfy 0 < Kgo <1, and thus 0 < K* < 1.

A second consequence of the bounds of Step 1 comes from (4.44). Again, we may always
assume that the sequence \/p, (7, ) converges weakly in H!_ (Q), strongly in LP(Q), 1 < p <

per
6, and almost everywhere on R3, to some function \/ps(z,z) € ngr(Q).

A third consequence of the bounds of Step 1 is deduced from (4.49): we may suppose that
the sequence of (non-negative) functions p, (£, z, z) converges weakly in L%/3(Q* x Q) to some
(non-negative) function that we denote for the moment by po (&, z, x).

Let us first prove that fQ* Poc (&, 2, 1) (Qde)g = pPoo(,x). For this purpose, we note that the

weak convergence in L%/3(Q* x Q) implies in particular that, for any function v € L%/?(Q),

. dg e [
im [ L or€mom@de = [ G55 [ e anie)

n—+too [« (2m)3
Now, the left-hand side is also given by

. d .
lim Q('/* pn(f,x,x) (2:)3)1)(.’13)(1.’13 = lim pn(x,x)v(x) dz,

n—>+00 n—-+0oo Q

and thus by

ngnioo Qpn(m,m)v(m) d.f[;:/ono(m,m)v(m)dm.

Therefore, we have

/ * pw(g,x,x)% — puola. 7). (4.51)

At this stage, we do not know a priori that ps (&, 2, ) = pso(&, 2, ), but we shall prove
this claim below in Step 3.

Let us now turn to the proof of the fact that the operator K> necessarily satisfies the
constraint :

/*Tr,lg(Q)Kgo (27’%)3 = 1. (4.52)
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The difficulty to deduce (4.52), from the convergence (4.50) and the fact that the above
constraint is satisfied for all n, is of course that we cannot take L as being the identity
operator in (4.50), for the identity is not a Hilbert-Schmidt operator. In order to conclude,
we shall need to use the bound on the kinetic energy term. We argue as follows.

For all n, and for almost all £ € @Q*, we know that Kg‘ and fAEKﬁn are trace-class

operators on LE(Q). In particular, this implies that the operator (1 — A);/QKg"(l — A);/2

is also trace-class (thus in particular Hilbert-Schmidt). In addition, since we have a bound,
derived from (4.45) and (4.38),

Tryz(q) [(1 - A)PEP( - A)?] de = Trpz)l(l - A)ekE)d¢ < C.

JQ* JQ*

we may assume, extracting a subsequence if necessary, that the sequence of operators fQ*(l —

A)é/QKg(l - A)é/2 & converges in the sense of (4.50), and its limit is necessarily fQ*(l -

(2m)3
A)é/QKgo(l - A);/2 (Qde)g. Testing this weak convergence with the operators L¢ = (1 — A)gl,
which are Hilbert-Schmidt on LE(Q), we obtain
. 1/2 on 1/2 -1
ngrﬂl-oo o TrLg(Q) [(1 —A) KL= A)(1 = A } d¢

_ 1/2 100 1/2 —1 )
_ 'Q*TrLE(Q)[(l_A)& K& - 0)%(1-A), }dg,

that is

n—>+00 Q*

Therefore, as fQ* TrLg(Q)Kg‘ % =1 for all n, we deduce that the operator K° satisfies the

constraint.

Step 3: Passing to the limit in the energy

A simple argument, using the operator (1 — A) and Fatou’s lemma allows one to show,
arguing as in the proof of Proposition 4.1, and making use of Step 2, that

Jim inf 1—|—'/*TrLg(Q) [—A¢K7] dg] = Aiminof;' o Trr2(q) (1 — Ag) K] de
> lim Trroo) (1~ Ag) K&° a
T n—rtoo Jou Le(Q) &7 (271')3
d§
=1 Tryo o) [—Ae K] —=
+' 0 LE(Q)[ e ] (2n)3’
and, therefore, that
o ny A€ co1 €
Jim inf '/*Tr,lZ(Q) [—A¢K{] e > Jo- Trr2(q) [—AeKE] n) (4.53)
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Next, a standard argument on the sequence p, (z, ), whose square root converges in ngr(Q),
shows that

lim
n—s-oc

1
- /Q G(x)pn(, )z + £ Do () pu ()

1
= / G(m)ﬁoo(m,m)d.'lz—l-ED(;(ﬁoo(m,m),p’oo(m,m)). (4.54)
Q

It is then clear that (4.53) along with (4.54) will suffice to establish the existence of a minimizer
for the periodic RHF model, provided we are able to show that, for almost every ¢ € Q* and

z€Q,

We finally prove this fact. For this purpose, we choose an arbitrary function (£, z) € L (Q* x
@), and define the Hilbert-Schmidt operators

Le = (1-A) (e, ) (1 - A), 2.
Using the convergence (4.50) for the sequence of operators (1 — A);/QKg(l — A)E/Q, we have
. 1/2 on 1/2 —1/2 ~1/2
lim [ Trpg) [(10- ) PKE (- 8)2(1 - ) %6 ) (10— )] dg

n—s-+oc Q*

- /.. Trpag[(1 - AVPEE1 - AP A Pae, ) - A) P e

This may also read

i ([ oo op@odeds = [ poién i) o,
n—+oo [ Q*xQ JJ QF*xQ

But on the other hand, we know that the sequence of functions p, (£, x,z) converges weakly
in L3(Q* x Q) to poo(&, z,z), thus we also have

n—-+4oc

tw [ o (6 O ) e = /] el (e )

This shows the equality (4.55), and concludes the proof of the existence of a minimum. We
now show the uniqueness of the periodic density p(x;z). The argument is an adaptation of a
similar claim in [34]. Assume by contradiction that there exist two minimizers K; and K3 in
K of I”HF  Denoting by p; and py their respective density, it is easily checked that

per

1

1 1
BT (K) = §E£7F(Kl) + §E£7F(K2) - gDG(m — p2,p1 — p2)

1
= I]ﬁfF - gDG(Pl — p2,pP1 — P2)-

We thus have Dg(p1 — p2, p1 — p2) = 0. Now, since G, p; and ps are periodic, we may rewrite
D¢ (py — p2,p1 — p2) with the help of the Fourier coefficients of p; — ps, and G. Since the
Fourier series expansion of G writes (see [32])

1 1 9.
G(’I‘) _ Z Weﬂmnaz’

T nez\{0}
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we observe that Dg(p1 — p2, p1 —p2) = 0 if and only if p; — py is constant. But, fQ p1—p2 =0,

hence p; = po. In particular, in the above proof, the whole sequence \/p, (x;x) converges to

V/Poo(x; ) and not only a subsequence. &
Before concluding this section, let us write down the Euler-Lagrange equations satisfied by
a minimizer K of Iﬁf’: Using the decomposition of K in K along an eigenbasis of each K¢,
when ¢ describes Q*, we may reformulate the minimization problem Ilﬁf F'in the following
way : I;‘;’?F is obtained by minimizing
dzd§
/ > Al / (wn@, z)? - G(m)mn(s,m)?) oo

n>1

sy ff B @) [[ e DG =€ ) dody

6
Q*xQ* (27T) nim>1

subject to the constraints

(
[ 3 ’
Q" n>1
0 < An(€) <1, for all n > 1, and for almost all¢ € Q, (4.56)

/ un (&, x)up, (&, ) dz = 8y m, for almost allé € Q*.
Q

The Euler-Lagrange equations satisfied by a minimizer K of Iﬁ,ﬁF can then be easily written.

They exhibit the Lagrange multipliers 7, u0 (€), uk(€), enm(€), respectively associated to the
constraints of (4.56). More precisely, we obtain, for almost every £ in Q*, and for every n > 1,

[ —Aup(€) = Gun(€.) + D Am(€) (um (€, ) 2xq * G)un (€. )
) - Z 5nm(§)um(£7 ')7 a.€. on Qa

ml (4.57)

/Q(iwn(é,x)Q G (6. 2)P) dz 4 3 () D fun (€, )P (€,)2)

m2>1
{ = pp (€) + g () + .

Since EﬁgF(K) is independent of the choice of an eigenbasis for K, we may assume
without loss of generality that the matrix of e,,,(£) is diagonal, for almost every £ in Q*;
in other words, the right-hand side term ) o, epm(§)um (€, -) in the first equation of (4.57)
may be replaced by &, (£)u,(£,-). Moreover, owing to the fact that the Lagrange multipliers
pl(€) and ) (&) are respectively associated to the constraints 0 < A, (¢) and A, (€) < 1, they

satisfy, for all n > 1 and for almost every ¢ in Q*,

0 =0, ifA,(& >0,
i (©) {> 0 i) o (4.58a)
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=0, if (8 <1,

i (€) L (4.58b)
<0, ifA, () =1.

We now apply u, (&, ) to the first equation of (4.57), next integrate over @), and, finally, insert
the result into the second equation of (4.57), to obtain, using (4.58a) and (4.58b),

An(€) =0 = en(§) =,
0< Ml <1 = e,(&) =m, (4.59)

4.3 Upper limit of the energy per unit volume and conclusion
In order to conclude the proof of Theorem 2.2, we now prove the
Proposition 4.2 We assume that the Van Hove sequence A satisfies (2.21), and that the
unit cell Q) is a cube. Then,
TRHF

M
RHF
h/{rljolip A < ey —}—7, (4.60)

where IR s defined by (2.17) (2.18).

per

Remark 4.1 As stated in Theorem 2.2, the same result holds true in the smeared nuclei case,
if we assume moreover that m shares the symmetries of the unit cube @), and define M in a
convenient way.

As a corollary of Proposition 4.1 and Proposition 4.2 (and the slight modifications which
are necessary to treat the smeared nuclei case), we shall obtain Theorem 2.2.

Proof of Proposition 4.2 : Let us denote by K a minimizer of the periodic RHF problem.
As usual, we may decompose K into operators K¢ (£ € Q*), whose kernels p(&, z,y) may be
written as

P& 7 y) =D An(Qun (&, 2)un(€,y)".

n>1

We denote

p(z,y) —/*p(&w,y)%-

Let now A be fixed. We build a cut-off function y, € D(R?) satisfying the following proper-
ties :

0<xa<T1;
xA =1on {z € I'(A); d(z,0'(A)) > 2};
xa =0 on T'(A)°.

In addition, we choose xa in such a way that it also satisfies

/R Ao, a)dz = A+ o( A]).
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We next consider the operator K, on L?(R?) whose kernel is

pa(m,y) = xa(z)p(z, y)xa(y)- (4.61)

A simple computation shows that

(KA, ¥)r2(ra) = (K(Xa®), (Xa¥)) 12 (R?):

and therefore we have 0 < K, < 1. The choice of xx ensures also that Tryp»gs)Ka =
Al +o(|A]) < Al

We now compute the RHF energy of Kj.

Since pa(z,7) = x4(z)p(z,x), it is a simple matter, arguing as in [11] and using the
periodicity of p(z,z), to show that the electrostatic terms

1 1
—/ Vapa + =D (pa,pa) + zUa
JR3 2 2

behave like

Al [/ Gp + %Dc(p,p) + %}
Q
as A goes to infinity. This is precisely where we need the assumption (2.21), the fact that @ is
a cube, and that p(z; ) shares the symmetries of the unit cube. Both facts play a fundamental
role — see the details in [11]. Therefore, we concentrate ourselves on the behaviour of the
kinetic energy term. We intend to prove that

dg
(2m)?

) 1
lim —rPrLQ(RB)[*AKA] = TrLé(Q) [*AEKE]

(4.62)

which will of course conclude the proof of Proposition 4.2.
Let us denote by (¢,)m>1 an Hilbertian basis of L?(R?). We begin with

—AKxpm = _A(/RS pA(x,y)@m(y)dy>
- /m —A(p(z:y)xa @) xa(y)em(y) dy

Hence,

(_AK/\‘Pma ‘Pm)L?(R3)

) ; dyd§
— '//RSXQ*HZN/\n(S) [/m —A(un (& z)xA (7)) o () da | un (€ y) xA(Y)em(y) o)
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Summing up next in m, we obtain

Z(_AK/\‘Pma‘Pm)LZ(R'"‘) = /R3 dy/ ZA Jun (& y) xa(y)

m>1 n>1

* d
Z [/m *A(un(f,m)XA(m))rpm(m) Az | om(y) (2:)3

m>1"

= / / > Aa(©un(€y) xaly) — Alun(Ey)xa(y)) (Qdf)g

n>1

o o€ [ () x(0) — A€ a ) dy

n>1

dfa D (¢ / V(un(€,y)xa () dy.

n>1

I
\

*

I
@\

We have therefore obtained

Trpo(re)[—AKA] = / dfqzx / V (un (&, 2)xA (2))|? da. (4.63)

n>1

We now remark that
| VmEapa@Pds = [ @) Vn(en) + (60 Vo) P ds
= [ @RIV (€N P+ [ fun(e0) P Txa () d
R3 R3
42 [ @) (€)Vua (€.) - Vi (o) ds
JR:

Each of the three integrals in the right-hand side may be restricted on T'(A), for xa vanishes
outside this domain. In addition, the third integral may be restricted on the “boundary”

OA = {z € T'(A); d(z;0T'(A)) < 2} of T'(A), as Vxa = 0 in the “interior” I'(A) \ A of I'(A).

Therefore, we have
dg
| s 2@ [ V(e abxaa) P de = 1+ 1+ 213, (4.64)
Q* (27() n>1 R3

where I}x, I[?i, Ii denote respectively

It _/ gz Z/ a2+ )21V (i (€, 5 + B)) 2 da

n>1 keA

dg
Iﬁ_-/cz*W; Z/ |un (&, 2 + k)’ Vxa (e + k)[* do

keA

Ii:/ *(zdf)az%@ / A(@)u;, (6, 7) Vun (€, 7) - Vxa (@) da.
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As A is a Van Hove sequence, we expect that the integrals over the “boundary” of I'(A) are
negligible with respect to |A|, or, in other words, that only the integrals over the “interior”
of T'(A) play a role in identifying the limit per unit volume. Indeed, it is easy to see, by a
standard argument that we have already used in [11] and that is based upon the properties
of xa and of u, (&, -), that

L= A/ 3ZA /|Vun £,2))? dz + o(|A))

= A/ TrLz [—A¢K] (ng) +o(|A]), (4.65)
and
d
—o(N) [ Trnyol-AeKel g (4.66)

Finally, we may bound I/z’{ as follows

3] <0(A)/Q*;A (/ [V (un (€, ) ) (/ [un (€. )|2)%d5

< o(IA) / (;A /Wung, ) (Z;]A /|uns, |2) ¢
< o(A)(/@;ma/@|V(un(5,x))|2)2('/*;An(s)./Q it o)’
— o(|A)) (/Q Trpz(g) [~ AekKe] (Qdf);,»);a (4.67)

by a repeated use of the Cauchy-Schwarz inequality. Inserting (4.65), (4.66), (4.67) into
(4.64), next in (4.63), we obtain

d
Trp2ms) [~ AKA] = [A] /Q* Trpzg) [~ AeKe] @ 6) +o(|A]),

which shows (4.62) and concludes the proof of the proposition. O
5 The Hartree-Fock model
Let us first of all recall the Hartree-Fock model (2.3) (2.4) (2.5) introduced in Section 2 :
1
I = inf{E{"(K) + SUn s K €Kat,

where the set of minimization is

Ka={0<K<1, Tr K =|A], Tr[(-A ~ V))K| < o0},
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and the energy functional writes

1 z, )2
EHF(K) = Tr[(-A = Vo) K // ! )dgcdy——/ dedy,
\'f ul 2 |z —yl

R3><R3 R3xR3

where p(z;y) is the Hilbert-Schmidt kernel of K. As is well-known, this functional is not
convex, and therefore we expect the thermodynamic limit problem to be much more difficult
than in the Reduced Hartree-Fock setting. In this latter case, we have used in a fundamental
way the convexity of the energy functional through the use of the ~-transform. Here, for the
Hartree-Fock case, this is not possible any more. Let us at once say that this is the main
reason why we are not able to prove a result on the convergence of the Hartree-Fock energy
per unit volume in the thermodynamic limit, and why we cannot establish the analogue of
Theorem 2.2. Nevertheless, in this section, we shall (a) give some formal computations in
order to justify our guess on the periodic Hartree-Fock problem (2.23)—(2.24)—(2.25) that
should be obtained in the thermodynamic limit, (b) show that this periodic problem is well-
posed mathematically (Theorem 2.3 in Subsection 5.1 below), and, finally, (c¢) check that the
upper limit of the Hartree-Fock energy per unit volume may at least be compared from above
by the HF periodic problem (Proposition 2.1 in Subsection 5.2).

Let us begin with some formal computations on the Hartree-Fock energy of a minimizer
K of I} when A goes to infinity.

We postulate that the sequence of operators K converges to some self-adjoint operator
K that commutes with the translation of Z3, and that belongs to K. By saying so, the main
assumption we do is the following one : We postulate that the density pa (z, x) asymptotically
behaves like a Q-periodic density p(z,z). We emphasize this is an assumption, and that we
only have the intuition that it is true. The lack of convexity of the Hartree-Fock model has
prevented us so far to prove this postulate.

In view of the results we have obtained on the Reduced Hartree-Fock model, it is then
reasonable to believe that in the energy (2.5) of a minimizer K, of (2.3) (2.4) (2.5)

1 z,y)|?
EYF(Ky) = Tr[(—A — Va) K] + // ”ATTfA Y gy — —/ Mdmdy,
|z 2R3 - [z —y|
X

M
the first three terms globally behave like |A| (B (K) + 7)

per
Therefore, it remains to understand, at least formally, the behaviour of the so-called

1 z,y)[?
exchange term —— / / M dxdy. For this purpose, let us replace the density
2J)) rexmre |z —yl

matrix pa(z,y) by a matrix of the form xa(z)p(x,y)xa (y) mimicking the argument we have
made above to determine the upper limit of the RHF model. The function x4 is a cut-off
function, which has all the good properties the reader may think of, and which are recalled in
the proof of Proposition 2.1 below. Then, we establish, still in the course of Proposition 2.1
in Subsection 5.2 below, that

2 2
// lpa(z,y) | ddy// |ddy.
A—>°° W R3xR3 |$ - y| QxR3 \35 - y|

Moreover, the quantity which appears in the right-hand side of the above equality makes
sense thanks to the following



5. THE HARTREE-FOCK MODEL 52

Lemma 5.1 For any K in K, we have

/ /R3 \w—y\ d < e
/ /R3 IT*uI (5:12)

/// DE ) Wocl€ — € )" (€ ) drdy B% (5.10)

(2)%’
)2xQ?

where the potential Wy, is given by (2.25) in Section 2 ; that is

and

ezk-n

WOO(T/aZ) = m

keZ3

The proof of this lemma is given below.

The above argument justifies, at least formally, the introduction of the periodic problem
(2.23) (2.24) (2.25), that we recall now :

I —inf{E"F(K): K € K},

per per

de | |
HF _ . _ s - -
B (K) = 5 Ty ) [~ AeKe] B '/Q Gp+ 5D (0. p) = 5 Beae(K),

where we denote by Fe,.(K) any of the two equivalent formulations (5.1a) and (5.1b) of the
periodic exchange term. Before proving in the forthcoming subsection that the HF periodic
problem is well-posed, we give now the proof of Lemma 5.1.

Proof of Lemma 5.1: We decompose the exchange term in two terms in the following way

/ /R3 \'f*ul
)2 2
/ / \ dy +/ / \p'ru\ dy.
lz—y|<1 |z—y|>1 y|

For the second term, we clearly have

2
/ / - |PTUU| dy</dx/ p(z,y)|? dy < +oc.
Ty

Let us concentrate now on the first term. Since we may prove like in (4.46) that |p(z,y)|? <
p(z) p(y), almost everywhere on R? x R3, we may write

2
/ / lp(z,y)1* &y < / / )
|lz—y|<1 |T U| |lz—y|<1 ‘T U‘
< // p(z) ply )d'rdy
(Q+B)x(Q+B1) 1T — Yl
< CHPH?G/E (Q+B1)
< CllplZess < oo,

(R3)

unlf
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since p lies in H! ..(R?). We check now the equivalence of the two formulations (5.1a) and

(5.1b), which follows from the following string of equalities :

lp(z,y)|? - déde’
/ EE ey = // — dxdy/ P90 (€ 9) T

QxR3 QxR? @rxer
Zkez3
= //// & z,y)p* (€, z,y) Z|x—y l:j xdy?fd){é

keZ3

- /// P& ) WS (E— € m— y)p* (€ M)MU(g)g

where we have used the properties of periodicity of the functions p(&, z,y) with respect to v,
and the definition (2.25) of W.

And the proof of Lemma 5.1 is complete. &

This section is organized as follows. We first prove in Subsection 5.1 that the periodic HF
problem is well-posed. Next, in Subsection 5.2, we check that we may compare from above
the Hartree-Fock energy per unit volume with this periodic problem, by using a minimizer of

HF
L,

5.1 The periodic HF problem

This section is devoted to the proof of Theorem 2.3, that we recall here for the convenience
of the reader.

Theorem 2.3 (Well-posedness of the HF periodic problem) The minimization problem
defined by (2.23) and (2.24) (respectively by (2.26) and (2.27)) admits a minimum.

We shall provide two different proofs of this claim. The first one makes use of regularity
properties of the potential W (7, z) given by (2.25), and which appears when one writes the
exchange terms according to the Bloch waves decomposition. The second one, which is also
the shortest one, is based upon the formulation (5.1a) of the exchange term.

First proof of Theorem 2.3 : In order to check that the minimization problem (2.23)

(2.24)—(2.25) is well-posed, we now prove that, given an arbitrary sequence of operators K,
(€ K) such that E;,Zf(Kn) goes to I;i, , as m goes to infinity, this sequence converges, up to
an extraction of a subsequence, to some operator K (€ K) that satisfies E;,Zf(K) Iﬁf. For
this purpose, we shall heavily rely upon the proof of Theorem 2.1. But, first of all, we begin
our proof with a careful study of the properties of regularity of the interaction potential W,

and consequently of the properties of the exchange term.

Step 1: Decomposition of the exchange potential

We first remark that the function e *W.(n, z) is Q-periodic with respect to & when 1 is



5. THE HARTREE-FOCK MODEL 54

fixed. Indeed, j € Z3 being fixed, we have

eM(m+ﬁVWx(ﬂﬂﬁ+aﬂ — i ing E:
kez3

> W, 0),

|T—l—7—|—k|

for almost all (n,2) € Q* x Q. We may therefore decompose e*W,(n, ) into its Fourier
series:

ETTWas(,7) = 3 am (),

meZ3
with coefficients a,,(n) given by
am(n) = /6’“7'”/1/00(77,flJ)e2“”“'ﬂE dr = /ez("%m)'w Z ———dzx
_ Z / i(n—2mm)-(z+k) 1 dr
z + k|

keZ3
47

- 1
_ 67,(77727rm)-y_d,y — ,
./R3 Yl [ — 2mm|?
for almost all n € Q*. Hence, we have

217rm T

W 2) = dme e 3

meZ3

5.2
n— 27rm|2 (5:2)

It is easily deduced from this expression that, with = being fixed in @), the function defined by
e~

We(n,z) — 47 —— W is continuous with respect to n € Q*, and even to n € (1 +¢)Q (¢ > 0,

small enough), and satisfies

2imm-x

) e~ e

2
] meZ3\{0}

Since we have isolated the singularity in 7, let us now examine the singularity in z. Let us
then consider

67”7 T

fn,z) =We(n,z) —e "*G(z) — 4r — (5.3)

nl?

We now check that f(n,z) is in L>®(Q* x @), and even in L*((1 + €)Q* x (1 +¢)Q). From
(5.2) and the Fourier series expansion of G, we obtain

. _ ) .
f(77a’17) = 4 e N7 e?zn‘m-m < B >
mezzs\{o} ln —2mm|?  |27m]|?

. e AT -m— |n|?
= dmerr Y Qe . 5.4
e ¢ |n — 2wm|? |2mwm|? (5:4)
meZ3\{0}
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It is obvious from the last equality that, at fixed 5, €™ f(n, z) is Q-periodic with respect to
z, and that

1+ |m|?
|n — 2mrm|* |2rm|t’

If )72y <C D

meZ3\{0}

for some positive constant which is independent of n € (1 + £)Q*; in other words, for any
€ > 0 small enough,

1£ (1, )22y € L((1 +€)Q)- (5.5)

With 7 being still fixed in (1 4 €)Q*, it is clear from (5.3) that

Ao f(pax) =dr D (e —1)b(w),

keZ3\ {0}

and thus f(n, z) is harmonic in (14¢)Q. With the help of the mean-value property, we finally
obtain for every z in @,

S 0Ly < CLE g,

and we conclude since the right-hand side in the above inequality lies in L% (Q*) thanks to
(5.5).

Next, we remark that the exchange term involves the function W (¢ — &',z — y) with &
and ¢ varying in Q*, and x and y varying in (). Therefore, we need some information on
Weo(n, ) on 2Q* x 2Q = [-27, +27[3x[—1,+1[3. In a straightforward way, for almost all
n € [-2m,+2n[3, & € [-1,+1[3, we obtain from (5.3) the decomposition

621,7rm-,1:

Waln,a) = Wslma) — 3 —— —dgeine Y (5.6)

z + k| 2”7
k€Z3 |k|oe <1 meZ3,|m|oo <

! |n — 2mm

with |20 = max(|z1],|z2|,|z3]), and where W (n, z) belongs to L>®(2Q* x 2Q)), owing in
particular to the fact that G(z) — Y yczs < \TlTk\ is bounded in 2Q* x 2Q).

Step 2: A priori estimates

Using the decomposition (5.6), let us now show that the a priori estimates that have been
established in Step 1 of the proof of Theorem 2.1 also hold true here.

Since some estimates only depend on the constraints and not on the energy functional, it
is easy to see that the following bounds of the RHF setting are also valid here:

pn (&, 2,y) is bounded in L?(Q* x Q x Q),
pn(z,y) is bounded in L?(Q x R?), (5.7)
pn(z,7) is bounded in L'(Q).



5. THE HARTREE-FOCK MODEL 56

Next, we are going to estimate the exchange term by splitting it into three terms according
to the decomposition (5.6). First, we have

‘//// pn (&2, y)Wao (€ — €2 —y)pi (¢, 2,y) dody déd¢’
Q?x(Q*)?

< |[Waslioe / / / / (& 2,9)] |01 (€ 2, y)| drdy dede
Err
< [Wlli= 0" / / / pulés ) dodydé < C, (5.8)
QQXQ*

by the Cauchy-Schwarz inequality and (5.7), where C' denotes here and below various positive
constants that are independent of n.
Next, we treat for instance the term :

"////pn(&w,y)xiyﬂ’;(f',w,y) ?gdf’ dzd ‘

QxQ \’I"*U| QxQ iz —yl

since we recall that, by the discrete and next the continuous Cauchy-Schwarz inequality, we
have

el = | [ 3 @i e ”( =

n>1
1 1
< / Z)‘ |“n fa 2 Z)‘ |“77 &y ‘ )2 (2:)3
n>1 n>1
d¢ d§
< MOl (€:2)° 5 )( Ma€) n (€. 0) P o )

< \/Pn (z,2) V/pu(y, ).

Thus, we have in

dédg’
‘////’o” Pn(§$y)dxdy§£
I (2m)°
1
nly )X — ) d:
S/QP( 7)(pnls xq * 1,r) do
1
< CHWHW l0n (. 2)126/5 0
: C”| s llon (21 gy o (s )17
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using Young’s and then Holder’s inequality. Next, using the Sobolev embeddings and (5.7),
we obtain

dgde’

‘////p" |Pn(£',~,y) e oy

< Cl |HL3M loa . 2) 55y 1Von(, Dm0
< 01 bl Ionte R, (1+|\v\/pn<m,m>||Lz(Q))”2. 510

Finally, we treat the contribution of the third term in (5.6), namely

‘////p” &) Z|§ E;,(g )Pﬁ(ﬁ’,m,y) 2126 )fldw]

1
[[ 100290150+ 23) .00 gy

QxQ
where, here and below, we shall use the notation f g~ g(§) = fQ* f(e=£&g(&) (Qdﬂlg. By the
Young and the Holder inequalities, we have, with  and y being fixed,
1
H (|pn(-,x,y)\ *Q W) ‘pn('uxay)‘ H[ll(Q*)
1
< H |pﬂ(aTaU)|*Q* @HLQ(Q ) ('amay)HLQ(Q*)
1 2
> HWHU(Q*) Hpn("mvy)HL2(Q*)'
Therefore,
e~ i(E=¢") (z—y) dede!
pn(&, 7, y) pi (&, 2, y) ——=dzdy
[ i
>< *
2
< Hg—PHm(Q*)/ / o)l gy dedy
1 2
— HWH[J(Q*) Hpn(§a$ay)HLQ(Q*XQ2) S C, (511)

in view of (5.7). We now collect (5.8), (5.10), and (5.11), and estimate the exchange term as

follows
déd
[ mieriwatc - €0 vppice, fru)(ffdm
Q%x(Q*)?

< CHCVVpn(z,2)|12q) (5.12)

It remains now to copy the proof of Theorem 2.1 : The kinetic energy term is bounded
from below by [|V/pn(z, a:)||%2(Q), and therefore the fact that the energy of the minimizing
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sequence converges to the infimum implies that ||V +/pn (7, )| 12(g) is bounded. Consequently,
all the bounds shown in the RHF setting still hold here :

\/Pn(z,z) is bounded in H'(Q), thus in LP(Q) 1 < p < 6,
pn(z,y) is bounded in LP(Q x Q), 1 <p <6,

Vpn(&, z, ) is bounded in L?(Q*; H'(Q)),
pn (€, z,x) is bounded in L3 (Q* x Q),

(5.13)

and each of the four terms of the energy (2.24) is bounded independently of n. As a conse-
quence of (5.13), we show the following bound that will be useful in Step 3:

pn(z,y) is bounded in H'(Q x Q). (5.14)

Indeed, we have

dg
(2m)?

Vapnle.m)] = \ [ @Vl
m>1

1/2
< /(nglx Ot € >|) (W;A un(e)l)
< (/mZNA O 2)) (/ PRl Ountcl)

Hence,

.//QXQ Vapn(z,y)|* dzdy
//ZA |V aum (&, x) Qdef //Z)\ |um£y)2(d7/d)£

QxQ+m2! QxQ*™
d¢
' *TrLg( = AeKe] —— @n) lon(z, )| 1 (@ < C.

IN

This yields (5.14).

Step 3: Convergence of the exchange term

In view of the bounds (5.7), (5.13), (5.14), we may choose a subsequence of K, still
denoted by K, such that the following convergences hold:

pn (&, 7,y) converges weakly in L?(Q* x Q x Q),
pn (€, x, ) converges weakly in L3 (Q* x Q), (5.15)
pn(z,y) converges strongly in LP(Q x Q), 1 < p < 6.

The last convergence holds, because by Rellich’s theorem, (5.14) implies that p, (x,y) strongly
converges (up to the extraction of a subsequence) in LP(Q?) for all 1 < p < 3. But since
we have in addition the second bound of (5.7), the interpolation 1nequahty yields the strong
convergence in L?(Q?) for all 1 < p < 6. Let us denote by K = fQ* K¢ © )3 the operator that

is the limit of K, in the sense of the operators weak topology, and in the sense of (4.50)
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the latter being equivalent to the first convergence of (5.15). Let p(&, z,y) denotes the kernel
of the associated K¢ : It is indeed clear that K € K for the same reasons as those indicated in
the proof of Theorem 2.1. In particular, K still satisfies the constraint of charge 1. Likewise,
we have

dg
(27)3’

and the electrostatic terms converge as they do in the RHF setting. Concluding the proof
of Theorem 2.3 amounts therefore to proving that we may pass to the limit in the exchange
term, or in other words that

liminf [ Trpe o) [~ AcKE] &

Tr; —A¢K,
n—rtoo Jo. e 2r)® = Jo () [~ Beke]

dim / / / / pulE. 2. y)Woe (€ — €. — )i (€', ) dEde! dady
— [[[[ seamwate - €.a o€ o) dea oy, (5.16)
R*x(Q*)?

In order to prove (5.16), we again decompose the interaction potential W (-, ) accordingly
o (5.6). We treat each of the three categories of terms separately, proving the analogue of
(5.16) for each of them. The assertion (5.16) will then follow by addition.

We begin with proving

e //// P&, 2, y) Woo (€ — & —y) py, (€, 2, y) dEdE' dudy
= /// p(&,2,y) Woo (€ =&z —y) p* (€, 2, y) dEdE dzdy.

Clearly, it suffices to prove

lim //// oulés2,) — plE,m, ) Woa (€ — €0 — y)pt(€ 2, y) déd€!dady = 0. (5.17)

n—>—|—oo

For this purpose, we observe that

L/{//[NU) D6y (€ — € y) g€ ) E’fdf didy|

< [\ e

d , ooy €
~ [ ) G (e~ €= )l [ €090 3] oy
Q* Q*

) )
QxQ Q*
< Wl / pn(yy) — o, )] on ()| dady
QxQ
< | Wasllz= lon(z,y) — o 9) 122, lon(@9) (g2

and (5.17) follows from the strong convergence of py,(z,y) to p(z,y) in L?(Q?).
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For the second term, we remark that

/// [lpn (2, )]* — Ip(=. )|]|xiy|dmdy

1
|z — |

Hpm,m? oo,y

L*(Q?) L*(Q?)

where the right-hand side converges to zero because p,(z,y) converges to p(x,y), strongly in
L*(Q?), thus |p,(z,y)|? converges to |p(z,y)|?, strongly in L%(Q?) .
It now remains to treat the third term of (5.6), namely for instance to prove

ngrgoo////pn &, y)pi(E 3, 1) 7|§ 5;,(2 dede! dudy

e i(€=¢")(z—y)
/// p(& z,y)p* (€ x y) —— déde dzdy.
£ —¢|
We introduce the function
e HE=¢) () ge’
€ =¢&12 (2n)3

and the analogous function F' when p,, is replaced by p. What we have to prove is that

Bey) = | o) (5.18)

lim / / / pul& ) Fa(,0,y) — plé, 2 ) F(E,my)] dédady =0, (5.19)

n—s-+oc

Q?xQ*

and for this purpose it suffices to show that p, (¢, z,y) converges weakly to p(¢,z,y) in L?(Q* x
Q?), which we already know by (5.15), and that F),(&,z,y) converges strongly to F(&,z,y) in
L?(Q* x Q?), which we now establish (up to the extraction of a subsequence).

71‘\56(\2 & belongs to L>®(Q x Q; L'(Q*)), and since p, (¢, ,y) is bounded in L?(Q* x

Q?), we easily deduce from Young’s inequality that

Since

F,(&,z,y) is bounded in L2(Q* x Q x Q).

Likewise, the generalized Young inequality for the Marcinkiewicz spaces (or weak LP spaces)
implies

F,(€,z,y) is bounded in L(Q* x Q x Q), (5.20)

using this time that % belongs to L3/2>°(Q*).

Let us now prove that F,(¢,z,y) is bounded in W1/21(Q* x Q?). This will imply by the
Sobolev embeddings theorem that F}, (¢, z,y) is relatively compact in LP(Q* x @Q?), for all
1<p< 12 In view of (5.20), Holder’s inequality yields the compactness in all LP(Q* x Q?),
for all 1 < p < 6, and thus in particular the desired L?(Q* x Q?) compactness. To prove

that F,(&,z,y) is bounded in W'/21(Q* x Q?), we prove that F,(¢,z,y) is bounded both
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in LY(Q% WY21(Q*)) and in L' (Q*; W/21(Q?)). The second bound is an immediate conse-
quence of the fact that F}, (¢, z,y) is bounded in L?(Q*; H'(Q?)). The latter fact holds because

both pu (€, 2, y) and Vapn(&,2,y) are bounded in 12(Q* x Q?), &g € L2(Q% L1(Q"),

and

i} e~ (z—y) i Ve i€ (z—y)
Fn(£7 x, y) = V:Epn(£7 €, y) *Q* T + pn(&a xz, y) *Q* T

In order to show that F,(¢,z,y) is bounded in L'(Q? W1'/21(Q*)), we remark first that
# € L®(Q?, W'/ (Q*), thus

—ig(v—y)
HFn(Saxay)HWuz,l(Q*) = Hpn(faxay) *Q+ BTHWUQJ(Q*)

N

1
S Hpn(fu T, y)HLl(Q*) HWHW1/2,1(Q*)

whence we deduce
HF (& =y Hrl (Q2W1/2.1(Q* < Hpn 2,y Hrl (Q*xQ2) H ‘£|2HW1/21 Q)

This concludes the first proof of (5.16), and thus the proof of Theorem 2.3.

¢
Second proof of Theorem 2.3 : We may observe that we can modify the argument which
is used in Step 3 above by proving the following.

Lemma 5.2 For any minimizing sequence K, € K o, I7F we have
£ ! n per 7

lim dx/ lon 2, )I* / / (5.21)
n—+oo, R \w—yl R? \w—y\

Proof of Lemma 5.2: The proof of the above Lemma 5.1 yields in particular that the
exchange term fQ dz [gs % dy is bounded independently of n, with the help of (5.13).
Moreover, in view of (5.15), |pn(z,y)|? converges to |p(z,y)|?
Then, by Fatou’s lemma, we deduce that

2
liminf/dT/ lpn(@.y)I” dy >/ /
n—-+00 R3 Ifc—yl R? Ifc—yl

In order to prove the reverse inequality for the upper limit, we argue as follows. Let R > 0
be fixed, we may write

2 2
/ / lon(z,y)|* /dx/ [on(z,9)? dy + / dm/ lon(z,y)] dy.
R? |LE - y‘ |lz—y|<R |LE - y| |lz—y|>R ‘*T - y‘

On the one hand, we obtain
T 2 1
/d'r/ ontz, ) dy - /dT/ |on (2, )| dy
[z—y|>R |T*,‘/| R Q R3
1 2
= R Hpn(&may)HLQ(Q*xQxQ) <

almost everywhere on R? x R3.

IN

= Q

. (5.22)
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for some positive constant C' that is independent of n, and because of the bound (5.13) on
P
On the other hand, we know from (5.15), that pp(z,y) converges to p(z,y) strongly in
L} (R* x R?). Thus, |p,(z,y)* converges to |p(z,y)|* strongly in L2 (R?® x R?). Since
‘Iiy‘x‘m,y‘SR(m,y) belongs to L (R? x R3), we clearly obtain, for any fixed R > 0,

2
lim / dx/ lon (2, y)I” / / et y)I” dy. (5.23)
n—+00 |lt—y|<R ‘*T - y| |lt—y|<R ‘*T - y|

Collecting (5.22) and (5.23), and letting n, and then R, go to 1nﬁn1ty, we finally obtain

)2
limsup/ dx/ |Pn vl dy < / /
n—-+oc R3 ‘T*U‘ R3 ‘7'71/‘

The proof is now complete. &

We shall now write down the system of Euler-Lagrange equations satisfied by any mini-
mizer K of Iﬁf.
Molecular Chemistry, and are likely to be the analogues in the periodic setting of the well-
known Hartree-Fock equations. The form of these equations is very similar to the one we
have derived for the periodic RHF model, namely (4.57) (4.59), except for an extra term
which comes from the exchange term. Arguing by analogy with the periodic RHF model, we

obtain the following system of FEuler-Lagrange equations, for almost every ¢ in Q*, and for

These equations look like very much the usual Hartree-Fock equations in

every n > 1,

[ M) G+ Y A (/ (€3G 9) ) )

m>1
d !
- // P&z y) WO =&z —y)un(é,y) dy—§3
J. Q*XQ (27T)

= Z Enm Um 55 )a a.e. on @,

m>1

! = (5.24)
/Q(Vun(s,m)Q G () [un (&, 2)?) dz + Z>]A n (&), um (&)%)
, . g’
] sesmmnw=c - 0 punesumley) dady g5
20,
\ = pin (&) + 1, () + 7,

with p(§5z3y) = 3251 Am(§)um (€, 2)ur, (€, y), and where the Lagrange multipliers
p2(€), ul(€), enm(€) are respectlvely associated to the set of constraints

e

0 < A(€) <1, for all n > 1, and for almost all¢ € Q*, (5.25)

/ un (&, x)uy, (&, ) dx = 8y m, for almost allé € Q*.
\ /@
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Efj (K) is independent of the choice of an eigenbasis for K¢, we may

assume without loss of generality that the matrix of &,,,(§) is diagonal, for almost every &
in @*; under this assumption, the right-hand side term, ) enm(&)um(&,-), in the first
equation of (5.24) becomes simply &, (&)u, (¢, ). In addition, the Lagrange multipliers still
satisfy the properties (4.58a), (4.58b), and (4.59), that we recall here for the convenience of

Since, once more,

the reader; namely, for all n > 1 and for almost every £ in Q*,

wofle oo
=0, if A\,(¢) <1,
bnc) {s 0, if Ag -1,
and
An(§) =0 = en(§) >,
0< @) <1l = e,(8) =m,
An(§) =1 = en(§) <

Once we have established the existence of a minimizer for the periodic Hartree-Fock model,
we are able to compare from above the Hartree-Fock energy per unit volume with this periodic
problem.

5.2 Upper limit of the energy per unit volume
In this section, we prove the following.

Proposition 2.1: We assume that the Van Hove sequence A satisfies (2.21). In addition,
we assume that the unit cell QQ is a cube, and that there exists a minimizer K € K of Iggf
whose density p shares the symmetries of the unit cube. Then,

" HF
II/KII*)SOISZPW S Iper + 7,
where IILE is defined by (2.23)-(2.24).

Remark 5.1 (1) The same result holds true in the smeared nuclei case, if we assume more-
over that m shares the symmetries of the cube Q, and define M according to (2.22).

(2) In the HF setting, since we do not know whether p is unique, the assertion that p shares
the symmetries of the cube needs to be assumed.

Proof of Proposition 2.1: The beginning of the proof is the same as in the proof of
Proposition 4.2 for the RHF problem. Let us denote by K a minimizer of the periodic HF
problem such that the corresponding density p shares the symmetries of the unit cube. We
set

ON = {k € A; d(k,0T(A)) < 2},
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= U r+a
keOA
A=A\ 8A,
and
= JE+@Q=T(A)\T(0A).
kEA

We build a cut-off function yp € D(R?) satisfying the following properties: 0 < yp < 1,
xA =1 on F(/O\), xA = 0 on I'(A)¢. In particular, we have

/R XA @)l 2)ds = [A] + o(|A]) < [A] (5.26)

We next consider the operator K, on L?(R?) whose kernel is

pa(z,y) = xa(z)p(z,y)xa (y)-

Then, because of (5.26), and since I/f”: is also obtained by minimizing EfF when the trace
constraint is relaxed, that is on the set of self-adjoint operators

Ki={0< K< 1, Tr K <|A], Tr[(-A - Vi) K] < +o0},

we have
HF
Iy" 1
AT ST
We show exactly as in the proof of Proposition 4.2 that

—_EHF(K,).

1 1 1
Jim A [TYL‘Z(R%[ AK,] / Vapa + 5D (pa: pa) + QUA]

M
= Q*TrLg( )[ A 5] /G,O—l— —Dq(p, p )-l-?

According to the definition (2.5) of the Hartree-Fock energy, to reach the conclusion, it remains
now to compute the exchange term corresponding to K, and to show that

2
lim // lealz,9)" dy—/ /
A—o00 \A\ R3xR3 |T*1/| R3 |T*1/|

It is easily seen that

2
// lea@ )" 0
|A| RIxR? |7 — Y|
2 2 2

_ _// xa(@) ozl xaw)?” o

\A\ R3xR3 |z — y

2 2 2

_ // ) o 2 // ey

\A\ A)xT(A) \T*U\ Al A)XT(8A) |z — y

xa(2)?|o(z, y)*x (y)
|A| // T(A)xT(BA) |z — | dody.
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Let us first concentrate on the last two terms and show that they converge to 0 as A goes to
infinity. Indeed, since 0 < xp < 1, the sum of these two terms is a fortiori less or equal to

the following quantity
2
On = / / lp(z.9)F° dy.
\A\ R3xT(3A) \35 —y|

/ / dy<+oo
R3 \T*U\

Besides, using the fact that p(x + k,y + k) = p(z,y), for every k in Z3, we have
k 2
Z / / plz+k,y)|° dy
Rt o +k—yl

keoA”
2
Z/df/ letay =B 8A|/ . [ el
wle G RV o oy

kEGA

which makes sense since

A
IAI

We conclude easily, since by definition of Van Hove sequences, [0A| = o(]A]), as A goes to
infinity. Therefore, it remains to check that

T Lo sty = [ o [ 0o,

since it is clear that, for the same reasons as above,

lo(z.y)? // Jo(z.9)?
dxdy dzdy + o(1).
Al i/ / ) \x—y| =18 e |x—y| @

We rewrite this sum in the following way

// Ipxy)|2ddy _ LZ // lo(z + y+l)|2dxdy
[A] S Jraysry 2 =] Al ey S Jaxq etk —y =1
2

_ // ple,y +1—k)| drdy
| en ) axe |z = (y + 1= k)]

1 z,y)|?

= 2 // Xszw(y)Mdmdy-
| |k’leA--Q><R3 z —yl

The conclusion is then easily reached by showing that the sequence of functions defined by
‘)\—‘ > k.1eA Xi—k+Q(y) converges to 1 in L®(R3)x-weak, and almost everywhere on R?. To
prove this claim, we could apply directly the technical lemma given in Chapter 2 of [11], but,
since the proof is simple, we reproduce the argument here. On the one hand, we clearly have

0< % > xikiqly Z Y xikroly) < 1.

k,leA keAleZ*
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Therefore, the sequence is bounded in L>®(R3). On the other hand, let y be fixed in R?.
Then, there exists m € Z? such that y lies in m + @, and for A large enough m lies in A — A,
by definition of a Van Hove sequence. Hence, for such an y, we obtain

1 1

L= WZZXhHQ(?J) = m#{k,leA; I —k=m)
keAlcZ3
! 1
- W#{keA; k—meAA}= W#[Am(A+m)]
1 1 |A\m\+%‘
> HA\ATE > B
. X

where Alm+3 — {k € A; d(k; OT(A)) < |m|+ 3}, and where the notation #S stands for
the number of elements in the set S. We conclude easily since, by definition of a Van Hove

1
Alml+5 . .
sequence, % goes to 0 as A goes to infinity. &

6 Extensions and perspectives

We list in this last section a few comments on the above results, and indicate some possible
extensions of our work.

So far, we have assumed that the periodic lattice that is covered in the limit by the
sequence A is Z3, and thus that the periodic cell Q is a cube of unit size. The first basic
observation to make is that our whole work goes through mutatis mutandis if we replace the
cube of unit size by a cube of size R. Slight modifications must be made in the definition of
the potential G in particular, and we refer the reader to [11] for such modifications.

Replacing the cube by another shape of unit cell is another story. As we have mentioned
above, Theorems 2.1 and 2.3 still hold. On the contrary, our strategy of proof for Theorem 2.2
depends upon the shape of the cell. Tt is an open (but rather technical) question to extend
this result to other shapes of cells.

Likewise, we have mentioned above that the assumption (2.21) is a technical assumption
required only for the proof of Theorem 2.2. We recall we believe it can be left apart, but we
do not know how.

Concerning the periodic problems per se, it would be an interesting question to address
to see whether one can say something on the minimizers. In the HF setting, for instance,
we are not able to check, for the time being, whether or not the minimizing periodic density
matrix K is a projector (which is equivalent to the fact that K¢ is a (finite rank) projector,
for almost all £ in Q*), as it is the case for the Hartree-Fock model for molecules.

Apart from these somewhat secondary questions, the main issue to tackle is the proof of
the thermodynamic limit for the energy per unit volume in the H and HF settings. As far as
this question is concerned, much remains to be done.

Even in some simplified framework, trying to understand Hartree-Fock type models for
quasicrystals would also be of interest. Our study [11] and references [1, 3, 8, 47] could
constitute a starting point.

Finally, let us mention that the periodic problems we have defined in this work can be
treated numerically, and we indeed intend to treat them numerically. Numerical experiment
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might in particular give some insight into the mathematical nature of these models and help
oneself to make up his mind on some of the questions mentioned above.

Acknowledgments: The authors would like to thank V. Bach for several stimulating dis-
cussions, and J. P. Solovej for valuable comments on a preliminary version of the manuscript.
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