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1. Introduction 2Contents1 Introduction 22 General setting of the models and main results 43 Preliminaries 133.1 A priori estimates for the Reduced Hartree-Fock and the Hartree-Fock models 133.2 Bloch waves decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 The Reduced Hartree-Fock model 254.1 Lower limit of the energy per unit volume . . . . . . . . . . . . . . . . . . . . 254.2 The periodic RHF problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.3 Upper limit of the energy per unit volume and conclusion . . . . . . . . . . . 475 The Hartree-Fock model 505.1 The periodic HF problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535.2 Upper limit of the energy per unit volume . . . . . . . . . . . . . . . . . . . . 636 Extensions and perspectives 66References 671 IntroductionWe consider here the thermodynamic limit (or bulk limit) problem for some Hartree-Focktype models, thereby continuing a long term work that we have begun in [11] with a similarstudy in the setting of the Thomas-Fermi-von Weizs�acker type models. The results we haveobtained in that framework were summarized in [10]. The thermodynamic limit problem forthe Hartree type models has been studied in [13] and announced in [12]. Those we shall obtainhere have also been announced in [12]. We refer the reader to [11] for a detailed introductionto these issues (see also [13], for a summary).Briey speaking, the so-called thermodynamic limit problem consists in examining thebehaviour of models for a �nite volume of matter when the volume under consideration goesto in�nity. Since the energy is an extensive thermodynamic quantity, it is expected thatthe energy per unit volume goes to a �nite limit when the volume goes to in�nity. It isalso expected that the function representing the state of the matter goes also to a limit insome sense. The thermodynamic limit problem we study (that is, for crystals and at zerotemperature) may be stated as follows.We consider a neutral molecule consisting of nuclei of unit charge (atomic units will beadopted in all that follows), and which are located at points k = (k1; k2; k3) of integral coordi-nates in R3; each nucleus therefore lies at the center of a cubic unit cell Qk = f(x1; x2; x3) 2R3;�12 < xi � ki � 12 ; i = 1; 2; 3g (with the convention that Q0 will be henceforth denotedby Q). The set of the positions of these nuclei is then a �nite subset � of the set of all pointsof integral coordinates that is Z3 � R3. The union of all cubic cells whose center is a pointof � is denoted by �(�); its volume is denoted by j�j. Since each cell has unit volume andeach nucleus is of unit charge, j�j is also the number of nuclei and the total nuclear charge.



1. Introduction 3It is important to note that, in all that follows, �(�) may be viewed as a big box into whichthe molecule is con�ned. (This claim may actually be checked rigorously; see Remark 3.2 inSection 3.1 below.) This assumption is standard for statistical physicists, and is compulsoryat positive temperatures.Suppose that for � � Z3 �xed, we have a well-posed model for the ground state of theneutral molecule consisting of j�j electrons and j�j nuclei located at the points of �. Let usdenote by I� the ground-state energy, and by �� the minimizing electronic density.Then, the question of the existence of the thermodynamic (or bulk) limit for the modelunder consideration may be stated as follows :(i) Does there exist a limit for the energy per unit volume 1j�j I� when j�j goes to in�nity ?(ii) Does the minimizing density �� approach a limit �1 (in a sense to be made precise later)when j�j goes to in�nity ?(iii) Does the limit density �1 have the same periodicity as the assumed periodicity of thenuclei ?Let us precise now the scope of this article. We shall not deal here with the physical back-ground of this theoretical problem, and we would rather refer the reader to the textbooks[6, 55] and the articles [27, 28]. The questions we tackle here are indeed close to questions ofinterest in Solid State Physics, both for theoretical and numerical purposes. For the sake ofbrevity, we shall not detail here the relationship between our work and Solid State Physics.We only mention some references here, namely [23, 42], and also [2, 6, 9, 40, 43, 48, 49, 57].The purpose of our study is twofold: �rst, we want to check that the molecular modelunder consideration does have the expected behaviour in the limit of large volumes; second,we wish to set a limit problem that is well-posed mathematically and that can be justi�ed inthe most possible rigorous way (in particular with a view to give a sound ground for numericalsimulations of the condensed phase).The models we shall consider here, and which are described in Section 2 below, are is-sued from Quantum Chemistry, and therefore, they are models that are only valid at zerotemperature. From the mathematical viewpoint, the thermodynamic limit problem has beenextensively studied, in the zero temperature setting as well as in the setting of strictly pos-itive temperatures (see [11] or [13] for a brief historical survey). We shall only mention theground-breaking work [32] by Lieb and Simon on the thermodynamic limit in the frameworkof the Thomas-Fermi theory (TF Theory for short). Indeed, this work was at the origin ofour own study [11] on the Thomas-Fermi-von Weizs�acker model (TFW model for short), andhas largely inuenced our work.In [11], we have proved that the three questions (i){(ii){(iii) of the thermodynamiclimit problem that we have raised above can be answered positively in the setting of theTFW theory. We �nd it useful to briey emphasize the fact that many of the concepts andtechniques that we have used in [11] (some of them being inherited from Lieb and Simon,some others being introduced by us in order to treat the TFW case) will be useful here.Taking bene�t from the work by Lieb and Simon who had already de�ned the TF periodicproblem, the idea to introduce the periodic TFW problem was straightforward. Our \only"contribution was therefore to prove that the TFW model does converge in the thermodynamiclimit to the guessed periodic model.



2. General setting of the models and main results 4The Thomas-Fermi type models are derived from the so-called Density Functional Theory.In this framework, the electronic ground state is determined globally by a single function: theelectronic density. In the Hartree model [13] and in the Hartree-Fock model that we studynow, the j�j electrons are described by j�j wave-functions, whose number thus goes to in�nitywhile passing to the thermodynamic limit. The analysis of these models is therefore expectedto be much more intricate than in the Thomas-Fermi case. As a matter of fact, we have notbeen able to do in the Hartree-Fock setting everything we did in the TFW setting; that is toprove the convergence of the energy per unit volume in the thermodynamic limit. We shallsee below that even the guess on the periodic problem is not so obvious in the Hartree-Fockmodel. Consequently, the mere de�nition of the limit problems turns out to be a substantialpiece of the work. Actually, it is worth emphasizing that the main obstacle we shall encountercomes from the lack of convexity of the Hartree-Fock functional. Indeed, our study of theTFW model [11] (as well as the TF model study by Lieb and Simon [32]) relies in a crucialway upon the convexity of the energy functionals. For the very same lack of convexity, wehave not been able in [13] to prove the convergence of the energy per unit volume in thethermodynamic limit for the Hartree model. We have only proved the convergence of theenergy per unit volume in the thermodynamic limit for a simpli�ed Hartree model (namelythe restricted Hartree model), whose energy functional is convex. However, we have proposeda periodic problem which is likely to be the Hartree model for crystals, and we have provedthat this periodic problem is mathematically well-posed.Similarly, in the Hartree-Fock setting, we shall not be able to prove the convergenceof the energy per unit volume in the thermodynamic limit. We shall nevertheless provethe convergence of the energy per unit volume in the thermodynamic limit for a simpli�edHartree-Fock model, whose energy functional is convex (namely the reduced Hartree-Fockmodel, treated in Section 4).As far as the Hartree-Fock model is concerned, we shall suggest a periodic problem candi-date to be the thermodynamic limit (see Section 5). We shall prove that this periodic problemis mathematically well-posed. By the way, it is worth emphasizing the fact that the Euler-Lagrange equations that are derived from our periodic HF problem are already known in theQuantum Chemistry literature (see, for example, [42]), thereby strengthening our convictionthat our model is the correct one.This paper is organized as follows. The forthcoming Section 2 is devoted to the de�nitionof the general setting we shall work in, and to the detailed presentation of the results weshall establish. Section 3 collects a priori estimates for the Reduced Hartree-Fock and theHartree-Fock models and a detailed description of the so-called Bloch waves (or Floquet)decomposition, which is a well-known tool by Solid State physicists, and which will also playa great role in our study. Section 4 and Section 5 are concerned with the Reduced Hartree-Fock and the Hartree-Fock model respectively. The last section of this paper is devoted tovarious comments and extensions. We shall also describe there some directions of currentresearch.2 General setting of the models and main resultsLet us begin this section by de�ning the molecular models we shall deal with in this article,namely the Hartree-Fock model, and one of its simpli�ed form, the reduced Hartree-Fock



2. General setting of the models and main results 5model. For the sake of brevity, we shall often abbreviate the names of these models, andwrite simply the HF and RHF models, respectively.We recall from the introduction that, for each �, �nite subset of Z3 � R3, we considerthe molecular system consisting of j�j nuclei of unit charge that are located at the points of� and of j�j electrons. We shall henceforth denote byV�(x) =Xk2� 1jx� kj ; (2.1)the attraction potential created by the nuclei on the electrons, and by12U� = 12 Pm;n2�m6=n 1jm� nj (2.2)the self-repulsion of the nuclei.As in [11], we shall also consider the case when the nuclei are not point nuclei but aresmeared nuclei. In that case, each Dirac mass located at a point k of � is replaced by acompactly supported smooth non-negative function of total mass one, typically denoted bym(� � k), and \centered" at that point of �. The regularity of the function m does not playa great role in the sequel, and therefore we shall assume without loss of generality that m isC1. The potential (2.1) and the repulsion (2.2) are then respectively replaced byV m� (x) =Xk2�m ? 1jx� kj ;12Um� = 12D�Xk2�m(�+ k);Xk2�m(�+ k)�� 12 j�jD(m;m):In the above equation, we have as usual denoted by D(�; �) the double integral de�ned asfollows D(f; f) = ZZ R3�R3 f(x) f(y)jx� yj dxdy:It will be convenient to introduce in this setting the functionm� =Xk2�m(� � k):In this setting of smeared nuclei, we shall also make use of the e�ective potential �� de�nedfor each electronic density �� as follows�� = �m� � ��� ? 1jxj :We are now in position to introduce the molecular models we shall deal with.The Hartree-Fock model, which is the most commonly used model in Quantum MolecularChemistry [41] can be written as followsIHF� = inffEHF� (K) + 12U� ; K 2 K�g; (2.3)



2. General setting of the models and main results 6where the set of minimization K� consists of self-adjoint operators K on L2(R3) such thatK� = f0 � K � 1 ; Tr K = j�j; Tr�(��� V�)K� < +1g; (2.4)with 1 denoting the identity on L2(R3). The energy functional EHF� in (2.3) is given byEHF� (K) = Tr�(��� V�)K�+ 12 ZZR3�R3 �(x; x) �(y; y)jx� yj dxdy � 12 ZZR3�R3 j�(x; y)j2jx� yj dxdy; (2.5)with �(�; �) denoting the kernel of the Hilbert-Schmidt operator K. Let us now de�ne thevarious quantities that appear in the above de�nition of the Hartree-Fock model.The operator K is the so-called (reduced) one-particle density matrix. From the generaltheory of trace-class operators on L2(R3) (see, for example, [44]), any operator K in K�admits a complete set of eigenfunctions ('n)n�1 in H1(R3) associated to the eigenvalues0 � �n � 1 (counted with multiplicity). Thus we may decompose K along such an eigenbasisof L2(R3), in such a way that its Hilbert-Schmidt kernel may be written as�(x; y) =Xn�1�n 'n(x)'�n(y):Owing to the fact that K is trace-class, the corresponding density is well-de�ned as a non-negative function in L1(R3) through�(x; x) =Xn�1�n j'n(x)j2;and Tr K = j�j = RR3 �(x; x) dx =Pn�1 �n. Moreover, according to this spectral decompo-sition of K, we may give a sense toTr[��K] =Xn�1�n ZR3 jr'n(x)j2 dx; (2.6)while Tr[V�K] =Pn�1 �n RR3 V�(x) j'n(x)j2 dx = RR3 V�(x) �(x; x) dx.It is a standard fact [30] that this formulation of the Hartree-Fock problem is equivalentto the following one, which might be more familiar to the readerIHF� = inf�EHF� ('1; :::;'j�j) + 12U� ; 'i 2 H1(R3);ZR3 'i'�j = �i;j; 1 � i; j � j�j�; (2.7)EHF� ('1; :::;'j�j) = j�jXi=1 ZR3 jr'ij2 � ZR3 V�(x) �(x) dx+ 12 ZZ R3�R3 �(x) �(y)jx� yj dxdy � 12 ZZ R3�R3 j�(x; y)j2jx� yj dxdy; (2.8)where �(x; y) = Pj�ji=1 'i(x)'i(y)�, �(x) = �(x; x) = Pj�ji=1 j'i(x)j2. This equivalence meansthat every minimizer of (2.3){(2.5) is a projector with �nite rank j�j. In this latter formulationthe 'i's are interpreted as the electronic wave-functions. Let us observe that the formulation



2. General setting of the models and main results 7in terms of density matrices is more intrinsic, and therefore sometimes more convenient to usethan the second one. Indeed, for every unitary transform U inCj�j, and for every orthonormalfamily ('i)1�i�j�j in H1(R3) j�j, we obviously have EHF� (U('1; :::;'j�j)) = EHF� ('1; :::;'j�j),while the density matrices that are respectively associated to U('1; :::;'j�j) and ('1; :::;'j�j)are the same.It is of course straightforward to deduce from the point nuclei setting (2.3){(2.5) theanalogous smeared nuclei setting for the HF problem; namelyIm;HF� = inf�Tr���K�+ 12D(��m�; ��m�)� j�j2 D(m;m)� 12 ZZ R3�R3 j�(x; y)j2jx� yj dxdy ; K 2 K��: (2.9)We also remark that the equivalence with a standard form of the type (2.7){(2.8) obviouslyholds true.As announced above, we shall also consider in the sequel the following simpli�ed form ofthe Hartree-Fock model; namely the reduced Hartree-Fock model:IRHF� = inf�ERHF� (K) + 12U� ; K 2 K��; (2.10)ERHF� (K) = Tr�(��� V�)K�+ 12D(�; �); (2.11)(where K� is still de�ned by (2.4)), and respectively its analogous smeared nuclei modelIm;RHF� = inf �Tr���K�+ 12D(��m�; ��m�)� 12 j�jD(m;m) ; K 2 K�� : (2.12)In order to turn to the thermodynamic limit problem per se, it is now time to recall theproperties of the sequence of sets � that we shall consider. For the sake of completeness, werecall here the following de�nition taken from [11] and [32].De�nition 1 We shall say that a sequence (�i)i�1 of �nite subsets of Z3 goes to in�nity ifthe following two conditions hold :(a) For any �nite subset A � Z3, there exists i 2 N such that8j � i; A � �j :(b) If �h is the set of points in R3 whose distance to @�(�) is less than h, thenlimi!1 j�hi jj�ij = 0; 8h > 0:Condition (b) will be hereafter referred to as the Van Hove condition.Briey speaking, a sequence satisfying the Van Hove condition is a sequence for whichthe `boundary' is negligible in front of the `interior'. A sequence of large cubes typically



2. General setting of the models and main results 8satis�es the conditions of De�nition 1. We shall only consider henceforth so-called VanHove sequences which are going to in�nity in the sense of the above de�nition. Occasionally,some additional conditions will also be required (see Theorem 2.2). Following the notation of[32, 11], we shall write henceforth lim�!1 f(�) instead of limi!1 f(�i).Before introducing the Hartree-Fock type periodic models, it is to be noticed that akey-point for their de�nition is the understanding of laws of interactions between periodicallyarranged particles. Indeed, owing to the long-range of the Coulomb potential, the electrostaticpotential created by the in�nite lattice of nuclei cannot be simplyPk2Z3 1jx�kj , since this seriesobviously does not make sense.We �rst of all introduce the periodic potential G that is uniquely de�ned by�4G = 4���1 + Xy2Z3 �(� � y)�; (2.13)and ZQG = 0; (2.14)with � being the Dirac measure. Due to our choice of normalization (2.14) for G, we alsoneed to de�ne the constant M = limx!0 �G(x)� 1jxj� : (2.15)We shall see in the sequel that this periodic potential G (which is also the Green's functionof the Laplacian with periodic conditions on the unit cell) is the interaction electrostaticpotential created by the periodic distribution of charges of nuclei. We denoteDG(f; f) = ZZ Q�Q f(x)G(x� y)f(y) dxdy:We also de�ne f(x) = 1jxj � ZQ dyjx� yj ;and then f�(x) =Xk2�� 1jx� kj � ZQ dyjx� k � yj�:It is convenient to rewrite f� as f� = V� � ��(�) ? 1jxj ;where, more generally, we shall denote by �
 the characteristic function of the domain 
.Besides, it is proved in [32], and recalled in [11], that, when Q is a cube,jf(x)j � Cjxj4



2. General setting of the models and main results 9almost everywhere on R3, for some positive constant C and that f� converges to the periodicpotential G + d, for some real constant d that is independent of �, uniformly on compactsubsets of R3 nZ3. Moreover, for any compact subset K of R3, f��Pk2�\K 1jx�kj convergesuniformly on K to G+ d�Pk2Z3\K 1jx�kj (see [32]). Therefore, we may noteworthy observethat the periodic potential G which was previously de�ned by (2.13) and (2.14) is also givenby G(x) = Xk2Z3� 1jx� kj � ZQ 1jx� y � kj dy�� d;that is, the sum over the lattice points of the Coulomb potential created by a point chargeplaced at the center of the unit cube, and which is screened, on each cell, by a uniformbackground of negative unit charge. This screening e�ect which is commonly observed inthermodynamic limit issues (see [25, 26, 27, 32, 11, 13]) is a consequence of the electricalneutrality of the molecular systems under consideration.Let us now turn to the periodic problems we want to de�ne. We shall detail in Section 3.2below the reasons why we need to introduce the following set of operators, which are aimedto become the analogues of the usual density matrices in the periodic case.De�nition 2 Let Q? = [��; +�[3, and, for every � in Q?,L2�(Q) = fu 2 L2loc(R3) ; e�i��x u is Q� periodicg:We now consider families of operators K� (� 2 Q?), which are self-adjoint on L2�(Q), andwhich enjoy the following properties, for almost every � 2 Q?.(H2)' 0 � K� � 1, with 1 being the identity on L2�(Q);(H3) the operators K� have �nite traces, and satisfy ZQ? TrL2�(Q)K� d�(2�)3 = 1;(H4) TrL2�(Q)[���K�] < +1 and RQ? TrL2�(Q)����K�� d� < +1:To every such family of operators is associated, in a unique way, a self-adjoint operator K inL2(R3), denoted by K = RQ?K� d�(2�)3 , such that(H1) K commutes with the translations of Z3;(H2) 0 � K � 1.We denote by K the set of operators K = RQ?K� d�(2�)3 which satisfy the conditions (H1){(H4)(or equivalently (H2'), (H3) and (H4)), and we shall call K a periodic density matrix.In all that follows, we shall denote by �(�; �; �) the Hilbert-Schmidt kernel of K�. Owingto the fact that K� is a trace-class operator, we may give a sense to �(�; x; x) as a Q-periodicfunction in L1loc(R3), and to �(x) = ZQ? �(�; x; x) d�(2�)3 : (2.16)



2. General setting of the models and main results 10Moreover, �(x) is also a Q-periodic function in L1loc(R3), which will play the role of theelectronic density in crystals. Let us emphasize once more the fact that the de�nitions of thevarious quantities appearing in the above de�nitions are made precise in Section 3.2 below,and, more speci�cally, in Proposition 3.2 therein.With the help of the above de�nitions, we are now able to state the periodic minimizationproblems associated to the above RHF and HF models. First, for the RHF model (2.10){(2.11), we set : IRHFper = inf�ERHFper (K) ; K 2 K�; (2.17)ERHFper (K) = ZQ? TrL2�(Q)���K�� d�(2�)3 � ZQG�+ 12DG(�; �): (2.18)with � being de�ned by (2.16). The analogous model in the smeared nuclei setting is writtenIm;RHFper = inffEm;RHFper (K);K 2 Kg; (2.19)Em;RHFper (K) = ZQ? TrL2�(Q)���K�� d�(2�)3 + 12DG(��m; ��m)� 12DG(m;m): (2.20)We shall prove in Section 4 the following results.Theorem 2.1 (Well-posedness of the RHF periodic problem)The minimization problem de�ned by (2.17) and (2.18) (respectively by (2.19) and (2.20))admits a minimum. In addition, the corresponding minimizing density � is unique and, thus,shares the symmetries of the unit cube.Theorem 2.2 (Thermodynamic limit for the RHF energy) We assume that the VanHove sequence � satis�es lim��!1 j�hjj�j Log j�hj = 0; 8h > 0; (2.21)where �h is de�ned in De�nition 1. In addition, we assume that the unit cell Q of the periodiclattice is a cube.In the point nuclei case, we havelim��!1 1j�jIRHF� = IRHFper + M2 ;where the constant M is de�ned by (2.15). Respectively, in the smeared nuclei case, assumingin addition that m shares the symmetries of the unit cube Q, we havelim��!1 1j�jIm;RHF� = Im;RHFper + M2 ;where the constant M is this time de�ned byM = ZZ Q�Qm(x)m(y)�G(x� y)� 1jx� yj� dxdy: (2.22)



2. General setting of the models and main results 11Some comments are in order. The reader has remarked that some technical assumptions (Qis a cube, (2.21), and m has cubic symmetry) have been made in the above theorem. Weneed these technical assumptions in Section 4, and more precisely in Subsection 4.3 to provethat the upper limit of 1j�jIRHF� may be compared from above by IRHFper + M2 . A technicalassumption such as (2.21), that is satis�ed by all Van Hove sequences except some verypathological ones, already appears in [11]. However, in [11], we manage to get rid of all thesetechnical assumptions using another strategy of proof for results like Theorem 2.2; namelythe \energy via density" strategy. Here, such a strategy, based upon the convergence of theminimizers, is out of reach. Of course we believe they are not necessary here either. Webelieve there is room for improvement in our proofs and some other strategy could allow oneto do without these assumptions. Unfortunately, we have not been able to do without themso far.On the contrary, no additional assumption at all is necessary for the other results stated inthis work. In particular, the fact that the unit cell is a cube is not important for Theorems 2.1and 2.3. We shall not repeat this observation in the forthcoming sections, but the readershould keep it in mind. For further comments, we refer the reader to Section 6.In view of the above theorem, and in view of calculations that will be detailed in Sections 3and 5 below, we �nd it natural to introduce in the Hartree-Fock framework the followingperiodic minimization problem :IHFper = inf�EHFper (K) ; K 2 K�; (2.23)EHFper (K) = ZQ? TrL2�(Q)���K�� d�(2�)3 � ZQG�+ 12DG(�; �)� 12Eexc(K) (2.24)where �(x) is still de�ned by (2.16). With �(�; �; �) being the Hilbert-Schmidt of K�, theSchwarz kernel of K is given by �(x; y) = RQ? �(�;x; y) d�(2�)3 , and belongs to L2(Q�R3) (atleast ; see Proposition 3.2 in Section 3.2 below). For some reasons which are made precise laterin Section 5, the periodic exchange term �12Eexc(K) is then de�ned by any of the followingtwo equivalent quantities (see Lemma 5.1 in Section 5 below) :Eexc(K) = ZQ dx ZR3 j�(x; y)j2jx� yj dy= ZZZZ(Q?)2�Q2 �(�; x; y)W1(� � �0; x� y) ��(�0; x; y) dxdy d�d�0(2�)6 :The interaction potential W1 is de�ned, for every � and z in R3, byW1(�; z) = Xk2Z3 eik��jz + kj : (2.25)The analogous problem in the smeared nuclei case readsIm;HFper = inf�Em;HFper (K) ; K 2 K�; (2.26)



3. Preliminaries 12Em;HFper (K) = ZQ? TrL2�(Q)���K�� d�(2�)3 + 12DG(��m; ��m)� 12Eexc(K)� 12DG(m;m): (2.27)For the Hartree-Fock model, we only have hints which indicate that the limit we suggest aboveis the correct one. In order to prepare and stimulate future works on the subject, we provein Section 5 that the periodic Hartree-Fock problem is well-posed, in the following sense.Theorem 2.3 (Well-posedness of the HF periodic problem)The minimization problem de�ned by (2.23) and (2.24) (respectively by (2.26) and (2.27))admits a minimum.Moreover, we establish in Subsection 5.2 the following.Proposition 2.1 We assume that the Van Hove sequence � satis�es (2.21). In addition, weassume that the unit cell Q is a cube, and that there exists a minimizer K 2 K of IHFper whosedensity � shares the symmetries of the unit cube. Then,lim sup�!1 IHF�j�j � IHFper + M2 ; (2.28)where IHFper is de�ned by (2.23){(2.24).Finally, we de�ne the following useful functional transformation which is a particular convexcombination, and that we have already used in [11]. It will be again very e�cient in thepresent work in Subsection 4.1, by allowing to take advantage of the convexity of the reducedHartree-Fock functional, in order to compare from below the lower limit of the energy perunit volume by the corresponding reduced Hartree-Fock periodic model.De�nition 3 For a given sequence � and a sequence �� of densities, we call the �transformof �� and denote by e�� the following sequence of functionse�� = 1j�jXk2� ��(�+ k):We shall make use in the sequel of the following notation. If H is a functional space, wedenote by Hunif(R3) the spaceHunif(R3) = f 2 D0(R3) ;  2 H(x+Q) 8x 2 R3; supx2R3 k kH(x+Q) <1g;and H1per(Q) = fu 2 H1loc(R3) ; u periodic in xi; i = 1; 2; 3; of period 1g:As announced in the introduction, the sequel of this paper is devoted to the proofs of theabove results.



3. Preliminaries 133 Preliminaries3.1 A priori estimates for the Reduced Hartree-Fock and the Hartree-FockmodelsWe begin this section by recalling the existence results of minima for the Hartree-Fock andthe reduced Hartree-Fock models de�ned in Section 2 through the formula (2.3){(2.5) and(2.10){(2.11) respectively. We shall only state the results and make the proofs in the caseof point nuclei ; stating the analogues in the case of the smeared nuclei brings no additionaldi�culty and the proofs are even easier in that case (see [11]).In the Hartree-Fock setting, the existence of a minimizer for neutral molecules for thestandard Hartree-Fock model (2.7){(2.8) has been proved by E. H. Lieb and B. Simon in [33]and by P.-L. Lions in [37]. Moreover, the equivalence between the standard Hartree-Fockmodel (2.7){(2.8) and the Hartree-Fock model stated in terms of density matrices (2.3){(2.5)(without restricting the minimization to projectors) is due to E.H. Lieb [30]. Lieb's proof hasbeen simpli�ed later by V. Bach [5]. A similar proof by P.-L. Lions may also be found in[37]. In the reduced Hartree-Fock setting (2.10){(2.11), the existence of a minimizerK� 2 K�for neutral molecules is due to J. P. Solovej [52]. It is important to notice that, the energyfunctional (2.11) is convex with respect to the density matrix. Moreover, thanks to the strictconvexity of � 7! D(�; �) (this is standard) and of the convexity of the set K, any minimizerK� of (2.10) leads to the same density which is uniquely de�ned (it does not depend on theminimizer K�) (see [52]). Let us henceforth denote by ��(x) this density.Let us now begin our study of the thermodynamic limit for these models with gettingbounds on the energy per unit volume.Lemma 3.1 Let � be a Van Hove sequence, then 1j�jIRHF� and 1j�jIHF� are bounded indepen-dently of �.Proof of Lemma 3.1 :Since the so-called exchange term �12 RRR3�R3 j�(x;y)j2jx�yj dxdy appearing in the de�nition(2.5) of EHF� is non-positive, it is obvious, from (2.3){(2.5) and (2.10){(2.11) that1j�jIHF� � 1j�jIRHF� :Thus in order to prove the above lemma, we shall �rst check that 1j�jIRHF� is bounded fromabove, and then, that 1j�jIHF� is bounded from below, with bounds that are independent of�. Let us begin with the bound from above, which is simpler. Let ' 2 D(Q) with RQ '2 dx =1. For each k in �, we set 'k = '(� � k). Then, the trace-class operator K0� whose Hilbert-Schmidt kernel is de�ned by Pk2� 'k(x) '�k(y) is clearly a test function for IRHF� , with theelectronic density being �0� =Pk2� j'kj2. Arguing as in [11], Chapter 3, Section 3.2 for theelectrostatic terms, we check successively that1j�jTr[��K0�] = ZQ jr'j2;



3. Preliminaries 14and that lim�!1 1j�j �12U� � ZR3 V� �� + 12D(��; ��)� = M2 � ZQG �+ 12DG(�; �):Let us check now the lower bound for the Hartree-Fock energy per unit volume. We �rstrecall that, by virtue of the so-called Lieb{Thirring inequality [35] and the generalization byP.-L. Lions and T. Paul [39] to the case of general density matrices), there exists a positiveconstant CLT, that is independent of �, such that, for any K in K� :CLT ZR3 �5=3 � Tr[��K]: (3.1)On the other hand, the Lieb{Oxford inequality [31] gives a lower bound for the exchangeterm in the following way. There exists a positive constant CLO that is independent of �,such that, for any K in K� with density ��CLO ZR3 �4=3 � �ZZ R3�R3 j�(x; y)j2jx� yj dxdy: (3.2)Whence, with the help of (3.1) and (3.2), the HF model may be compared from below by aThomas-Fermi-Dirac type model (see E.H. Lieb [29]), as follows :EHF� (K) � CLT ZR3 �5=3 � ZR3 V� �+ 12D(�; �)� CLO ZR3 �4=3; (3.3)for everyK 2 K�. The proof of the lower bound for 1j�jIHF� is then a consequence of the resultsobtained by E.H. Lieb and B. Simon [32] and by the authors [11] for the Thomas-Fermi typemodels. We �rst notice that, whenK lies in K�, because of the Lieb-Thirring inequality (3.1),the corresponding electronic density � belongs to the set f� � 0; � 2 L5=3(R3); D(�; �) <+1; RR3 � = j�jg: In particular, with the help of the H�older inequality, and since 1 � 43 � 53 ,we get ZR3 �4=3 � �ZR3 �5=3�1=2 �ZR3 ��1=2 � �ZR3 �5=3�1=2 j�j1=2: (3.4)In addition, with f� = V� � ��(�) ? 1jxj , we recall from [11] that, for every 1 � p < 3,kf�kLp(R3) � C j�j1=p: (3.5)Whence, going back to (3.3),EHF� (K) + U�2 � CLT ZR3 �5=3 � ZR3 f� �+ 12D(��(�) � �; ��(�) � �)�CLO ZR3 �4=3 + U�2 � 12D(��(�); ��(�)) (3.6)� CLT ZR3 �5=3 � kf�kL5=2 k�kL5=3�CLO�ZR3 �5=3�1=2 j�j1=2 � C0j�j� CLTk�k5=3L5=3 � j�j2=5 k�kL5=3 � CLOk�k5=6L5=3 j�j1=2 � C0j�j; (3.7)



3. Preliminaries 15for every K 2 K�, where, in addition to (3.4) and (3.5) | with p = 52 , we have used thefollowing two facts :� ZR3 V� �+ 12D(�; �) + U�2= �ZR3 f� �+ 12D(��(�) � �; ��(�) � �) + U�2 � 12D(��(�); ��(�)) ;which follows from the de�nition of f�, andjU� �D(��(�); ��(�))j � C0 j�j; (3.8)for some positive constant C0 that is independent of � [11]. From (3.7) and by settingX = k�kL5=3�3=5 , we �nally obtain1j�jIHF� � CLTX5=3 �X � CLOX5=6 �C0; (3.9)for any X � 0. The function of X which appears in the right-hand side of the above inequalityis bounded from below by some constant (independent of �) on the set fX � 0g. Thisconcludes the proof of the lemma. }From now on, we shall denote by K� a minimizer of IRHF� or IHF� indiscriminately, by��(�; �) its kernel, and by �� = ��(x;x) the corresponding electronic density. As a corollaryof Lemma 3.1 and its proof, we have the following :Proposition 3.1 There exist positive constants C that are independent of � � Z3 such thatthe following estimates hold :1j�jTr[��K�] � C; (3.10a)1j�j ZR3 jrp��j2 � C; (3.10b)1j�j ZR3 �5=3� � C; (3.10c)1j�j ZR3 � p� � C; for every 1 � p � 53 ; (3.10d)1j�jD(��(�) � ��; ��(�) � ��) � C; and (3.10e)0 � 1j�j ZZ R3�R3 j��(x; y)j2jx� yj dxdy � C: (3.10f)Remark 3.1 The bound (3.10f) on the exchange term was postulated in the chemistry liter-ature (see [42]) but, to the best of our knowledge, it was not checked rigorously so far exceptin the simpli�ed framework of the free electron gas by G. Friesecke [21]. This bound impliesthat the exchange term has to be asymptotically of the same order as the volume occupied by



3. Preliminaries 16the molecule, here j�j. In particular, the exchange term exhibits an asymptotic behaviour inthe thermodynamic limit which is completely di�erent from the one of the other electrostaticterms. (Note that each of them behave separately like j�j5=3 while their sum globally behaveslike j�j (see [11])).Proof of Proposition 3.1 : We argue only in the framework of the Hartree-Fock model,the case of the reduced Hartree-Fock model being even easier to deal with. We �rst showthat (3.10c) holds. Indeed, on the one hand, we know, by Lemma 3.1, that the energy perunit volume 1j�jIHF� is bounded from above by some constant independently of �. While, onthe other hand, by combining with (3.9) in the special case when X = k��kL5=3�3=5 , and by usingJensen's inequality, we obtain C � 1j�jIHF� � C1X5=3 � C2;where C, C1 and C2 are positive constants that are independent of �. It is now easy to deduce(3.10c). H�older's inequality together with (3.10c) yields (3.10d).The inequality (3.10f) next follows with the help of the Lieb-Oxford inequality (3.2) and(3.10d) | with p = 43 . From (3.5) and (3.10c), and using H�older's inequality, we deduce1j�j ����ZR3 f� ������ � C: (3.11)We then deduce (3.10e) by comparing (3.10c), (3.10f) and (3.11) with (3.6) and (3.8). Col-lecting the previous bounds and comparing with the de�nition (2.5) of EHF� (K�), we checkthat the last remaining term in the de�nition of the functional, namely Tr[��K�], is also ofthe order of j�j. This gives (3.10a).We next observe that for every K in K�, we haveZR3 jrp�j2 � Tr[��K]: (3.12)Indeed, let K 2 K� be given, that we decompose along an eigenbasis ('n)n�1 2 H1(R3) asin Section 2. Thanks to (2.6), we check successively that :ZR3 jrp�j2 = ZR3����r�Xn�1�n j'nj2�1=2����2= ZR3 ��1 3Xi=1����14Xn�1�n �'n � @'�n@xi + '�n � @'n@xi �����2 (3.13)� ZR3 ��1 3Xi=1�Xn�1 �n j'nj ����@'n@xi �����2� ZR3 ��1 3Xi=1�Xn�1 �n j'nj2� �Xn�1�n ����@'n@xi ����2� (3.14)= ZR3Xn�1�n jr'nj2 = Tr[��K]



3. Preliminaries 17with the help of the Cauchy-Schwarz inequality to obtain (3.14) and with the convention thatthe quantities inside the integrals in the right-hand sides of (3.13) to (3.14) are zero almosteverywhere in the region where � itself vanishes. Finally, thanks to (3.12), (3.10b) is a directconsequence of (3.10a). This concludes the proof of the proposition. }From these bounds on the energy per unit volume, we deduce as in [11, 13], the followingtwo corollaries.Corollary 3.1 (Compactness) For any Van Hove sequence �, we haveZ�(�)c �� = o(j�j): (3.15)Remark 3.2 The above corollary says that, asymptotically, j�j + o(j�j) electrons lie in the\big box" �(�). With this result together with the fact that the van Hove condition allows toneglect the surface e�ects, it turns out that, at zero temperature, any boundary condition forthe wave functions or the electronic density on a big box (like Neumann, Dirichlet or periodicboundary conditions) give rise to the same periodic model after passing to the thermodynamiclimit. This, of course, may be particularly relevant for numerical computations.Proof of Corollary 3.1 : This is a direct consequence of (3.10e) (see [11], Section 3 inChapter 3). }The second corollary makes use of the notion of �-transform, introduced in [11] andrecalled in De�nition 3 in Section 2.Corollary 3.2 For any Van Hove sequence �, the sequence pe�� is bounded in H1unif(R3),independently of �. Moreover, lim�!1ZQ e�� = 1: (3.16)The above bounds on e��, which are easily deduced by a convexity argument from the de�nitionof the �-transform and from the bounds (3.10b) and (3.10d), will be useful while passingto the lower limit on the energy per unit volume for the reduced Hartree-Fock model inSubsection 4.1.Let us end this subsection by recalling the following result which asserts that the limitof a sequence of �-transforms is necessarily periodic. We skip its easy proof, for which allarguments may be found in [11].Lemma 3.2 Let � be a Van Hove sequence in the sense of De�nition 1. Let f� be a sequenceof function such that, either kf�kLpunif(R3) � C or kf�kLp(R3) � Cj�j1=p, for some p 2 [1;+1]and some constant C that is independent of �. Let us assume that ~f� converges to some ~f ,almost everywhere on R3, or weakly in Lploc | when 1 � p < +1, or in L1�?weak | whenp = +1. Then, ~f is periodic.In order to state rigorously the periodic models we shall consider below, we extend in theforthcoming section the classical notion of one-particle density matrix used for molecules to



3. Preliminaries 18its analogue for crystals. This construction will allow us to set the RHF and HF models forcrystals in terms of such \periodic density matrices". These new objects are closely relatedto the so-called Bloch waves decomposition classically used in Solid State Physics, as we shallsee below.3.2 Bloch waves decompositionLet Q = [�12 ; +12 [ 3 be the unit cube of R3 centered at 0. We denote by Q? = [��; +�[ 3 theunit cell of the dual (or reciprocal) lattice associated to Z3. In full generality, while workingwith a general periodic lattice (with unit cell still denoted by Q), Q? is the so-called Brillouinzone associated to the dual lattice (see for example [45, Section XIII-16]).In the sequel, we shall denote by K a self-adjoint operator in L2(R3), which is aimedat being the \periodic density matrix" we are looking for, and that enjoys the followingproperties :(H1) K commutes with the translations which leave the periodic lattice Z3 invariant;namely 8 k 2 Z3; �k K = K �k ;with �k being de�ned by �k' = '(�+ k)for any function ' on R3.(H2) 0 � K � 1, in the sense of self-adjoint operators in L2(R3), with 1 being the identityoperator on L2(R3).Because of (H1), K is not a compact operator. However, generally speaking, takingadvantage of this invariance property of K, we shall be able to decompose K into a continuousfamily of compact, and even trace-class, operators, whose spectral decomposition is thereforevery simple. It is classical to study the spectral resolution of K as an operator on L2(R3)with the help of the so-called Bloch waves decomposition of K which has been introducedby G. Floquet [20] in the one dimensional case and by F. Bloch [7] in the general case.We shall explain now the main ingredients of this method following mainly the formalismof M. Reed and B. Simon [45, Section XIII-16] together with the book by C. Conca, J.Planchard and M. Vanninathan [16]. Among the wide literature which is devoted to theBloch waves decomposition (and some applications), we refer more speci�cally the reader to[2, 15, 17, 18, 19, 22, 24, 56].The spirit of this decomposition is the following : we may construct a decompositionof L2(R3) according to this invariance by translation. For this purpose, we de�ne H =L2(Q?;L2(Q)). Then, there is an isometry U between L2(R3) and H, the so-called Floquetoperator, de�ned by U : L2(R3)!H and(U')�(x) = Xk2Z3 e� ik � �'(x+ k); for a.e. � 2 Q?; x 2 Q; (3.17)



3. Preliminaries 19for any ' in the Schwartz class S(R3). One may check (see [45]) that U is unitary fromL2(R3) onto H and that the inverse of U is U� de�ned, for all � 7! g� in H, by :(U�g)(x+ k) = ZQ? eik � �g�(x) d�(2�)3 ; for all k 2 Z3; for a.e. x 2 Q: (3.18)We write down explicitly the fact that U is an isometry, using (3.17) and (3.18), and weobtain the following identity('; )L2(R3) = ZQ?((U')� ; (U )�)L2(Q) d�(2�)3 ; (3.19)for any functions ' and  in L2(R3), from which we also infer that, in particular :k'k2L2(R3) = ZQ? k(U')�k2L2(Q) d�(2�)3 : (3.20)Let us make a few comments on the de�nition (3.17). First of all, the expression appearingin the right-hand side of (3.17) may be seen as a Fourier series expansion with respect to the �variable, and whose coe�cients lie in L2(Q). Next, it is clear from (3.17) that e�i x��(U')�(x)is Q-periodic. Such functions are often called quasi-periodic functions with quasi-momentum�. They are known as Bloch waves in the Solid State Physics literature. It is more convenient(and we shall always do it in the following) to look at (U')� as a function lying in L2�(Q),with L2�(Q) = f' 2 L2loc(R3) = '(x+ k) = ei k��'(x);8 k 2 Z3; for a.e. x 2 Qg;or, equivalently, L2�(Q) = f' 2 L2loc(R3) = e�i ��x'(x) is Q-periodic g:It is clear from the second formulation, that L2�(Q), endowed with the usual Hilbert scalarproduct on L2(Q), is a Hilbert space which is isomorphic to L2(Q).With the help of the isomorphism U between L2(R3) andH, we now return to the spectralanalysis of the operators K satisfying (H1) by following [45].To the above decomposition of functions in L2(R3) into Bloch waves corresponds a so-called direct integral decomposition of K in the sense that there exists a unique function� 7! K� in L1(Q?;L(L2�(Q))) (in that follows, L(X) denotes the space of bounded linearoperators from X into itself) such that, for any function ' in L2(R3) and almost every �in Q? : (UK')� = K� (U')� : (3.21)Moreover, we also have : sup�2Q? kK�kL(L2�(Q)) = kKkL(L2(R3)): (3.22)And we shall write K = ZQ?K� d�(2�)3 (3.23)



3. Preliminaries 20in order to refer to the decomposition (3.21) of K.The spectral analysis of K now reduces to the spectral analysis of the family of self-adjointoperators K� 2 L(L2�(Q)), the parameter � varying in Q?. We now enter the details of such adecomposition for a special class of operators satisfying (H1) and (H2) which will appear belowin the setting of the periodic reduced Hartree-Fock and the periodic Hartree-Fock models.From now on, let us denote by K an arbitrary self-adjoint operator satisfying (H1) and(H2). We assume that there exists a kernel representation of K of the formK'(x) = ZR3 �(x; y)'(y) dy;say for any function ' in S(R3), with �(�; �) 2 L2loc(R3 �R3): Note that (H1) is then equiva-lently written �(x+ k; y + k) = �(x; y); for every k 2 Z3; a.e. on R3 �R3; (3.24)while the self-adjointness of K simply reads��(x; y) = �(y;x);where z� denotes the complex conjugate of z (2 C). We shall now impose further conditionson the kernel �.As a consequence of the de�nition and of the uniqueness of the decomposition (3.23) ofK, we deduce that each operator K� is self-adjoint [45]. Moreover, we have the followingLemma 3.3 Let K = RQ?K� d�(2�)3 . Then, (H2) is equivalent to :(H2)' 0 � K� � 1 in the sense of self-adjoint operators in L(L2�(Q)), and for almostevery � in Q?.We are searching for operators K for which the K�'s are Hilbert-Schmidt, and more speci�-cally, we shall rely upon the following.Lemma 3.4 Let K = RQ?K� d�(2�)3 . Then the following two properties are equivalent :(i) � 2 L2(Q�R3) \ L2(R3 �Q): (3.25)(ii) For almost every � in Q?, K� is a Hilbert-Schmidt operator with kernel �(�;x; y) and�(�;x; y) 2 L2(Q?;L2(Q�Q)).Moreover, if K satis�es (i) or (ii), we haveZQ? d�(2�)3 ZZ Q�Q j�(�;x; y)j2 dxdy = ZZ Q�R3 j�(x; y)j2 dxdy: (3.26)In addition, � and �(�; �; �) are related as follows : for almost every x and y in Q, and � inQ?, �(�;x; y) = Xk2Z3 e�ik���(x+ k; y) = Xk2Z3 e+ik���(x; y + k); (3.27)



3. Preliminaries 21hence �(x; y) = ZQ? �(�;x; y) d�(2�)3 : (3.28)Proof of Lemma 3.3 : The proof mimics that of (3.22), which may be found in [45, SectionXIII.16 ] (proof of Theorem XIII-83). We shall partially reproduce the argument here for thesake of consistency.In virtue of (3.22), and since (H2) implies in particular thatkKkL(L2(R3)) � 1;it just remains to check that K� � 0 for almost every � 2 Q? as soon as K � 0 (the reverseimplication being even easier to prove).Following [45], we choose a dense subset f�kgk�1 of the unit sphere of L2(Q), and we takean arbitrary function f � 0 in L1(Q?). We check now that, for every k � 1,ZQ? f(�)(K� �k;�k)L2(Q) d�(2�)3 � 0:Our claim will follow then immediately, since we already know that the (K� �k;�k)'s belongto L1(Q?). Let us �rst note that pf belongs to L2(Q?). Then, if we set gk = U�(pf �k),gk 2 L2(R3), and by using the de�nition (3.21) of K� together with the de�nition (3.19) ofthe scalar product on H, we haveZQ? f(�)(K� �k;�k)L2(Q) d�(2�)3 = ZQ?(K�pf(�)�k;pf(�)�k)L2(Q) d�(2�)3= ZQ?(K� (Ugk)�; (Ugk)�)L2(Q) d�(2�)3= ZQ?((UKgk)�; (Ugk)�)L2(Q) d�(2�)3= (K gk; gk)L2(R3) � 0;because of (H2). }The proof of Lemma 3.4 is based upon the following result that we shall use several timesin the sequel :Lemma 3.5 Let (un(�; �))n�1 be a Hilbert basis of L2�(Q) for almost every � in Q?, such that� 7! un(�; �) (that we shall simply denote by un in the following) belongs to H. Then, if weset 'n = U�un and, for every p in Z3,'n;p = �p 'n = ZQ? eip��un(�;x) d�(2�)3 ; (3.29)the family ('n;p)n�1;p2Z3 is a Hilbert basis of L2(R3).Remark 3.3 Before giving the proof of Lemma 3.5, and then the one of Lemma 3.4, let us�rst note that such a basis exists. Indeed, if (un) is a given Hilbert basis of L2(Q) consisting ofQ-periodic functions (think, for example, of un = e2i�n�x; n 2 Z3), then un(�;x) = ei��xun(x)provides the desired example.



3. Preliminaries 22Proof of Lemma 3.5 : Let (un)n 2 H and ('n;p)n;p be de�ned as in the statement of theabove lemma. We �rst show that the ('n;p)n�1;p2Z3 form an orthonormal family in L2(R3).Indeed, let n;m � 1 and let p; q 2 Z3. Then, using �rst the de�nition (3.19) of the Hilbertscalar product on H, the de�nition (3.29) of (')n;p, next the orthonormality of un(�; �) andum(�; �) , and �nally the fact that ZQ? eip�� d�(2�)3 = �p;0;for every p 2 Z3 (��;� being the Kronecker symbol), we haveZR3 'n(x+ p)'�m(x+ q) dx = ZQ?((U'n;p)�; (U'm;q)�)L2�(Q) d�(2�)3= ZQ? ei(p�q)�� d�(2�)3 ZQ un(�;x) u�m(�;x) dx= �n;m ZQ? ei(p�q)�� d�(2�)3 = �n;m �p;q:We check now that the Parseval identity holds, thus proving our claim. Indeed, let  2L2(R3), thenXn�1 Xp2Z3 ����ZR3  (x) '�n(x+ p) dx����2= Xn�1 Xp2Z3 ����ZQ?((U )� ; (U'n;p)�)L2�(Q) d�(2�)3 ����2= Xn�1 Xp2Z3 ZZ Q?�Q? eip�(���0)((U )� ;un(�; �))L2�(Q) ((U )�0 ;un(�0; �))�L2�0 (Q) d�d�0(2�)6= Xn�1 ZQ? d�(2�)3 ����ZQ(U )�(x) u�n(�;x) dx����2 (3.30)= ZQ? k(U )�k2L2�(Q) d�(2�)3 (3.31)= k k2L2(R3) ; (3.32)where (3.30) follows from the Poisson formula, (3.31) from the Parseval identity, and (3.32)from (3.20). }We may turn now to theProof of Lemma 3.4 : Let (un)n and ('n;p)n;p be de�ned as in Lemma 3.5. With the helpof Lemma 3.5, and using �rst the Parseval Identity in L2(R3), and then the de�nition of � as



3. Preliminaries 23the kernel of K, we haveZZ Q�R3 j�(x; y)j2 dxdy = ZQ dxXn�1 Xp2Z3����ZR3 �(x; y) '�n(y + p) dy����2= Xn�1 Xp2Z3 kK'n;pk2L2(Q)= Xn�1 kK'nk2L2(R3) (3.33)= Xn�1ZQ? kK� un(�; �)k2L2(Q) d�(2�)3 ; (3.34)where (3.33) comes from (H1), and (3.34) from the de�nitions of K� and of the scalar producton H. From (3.34), we obtain in particular, that Pn�1 kK�un(�; �)k2L2(Q) is �nite for almostevery � in Q? as soon as (3.25) holds true; this is precisely the de�nition of K� as an Hilbert-Schmidt operator on L2�(Q) (see, for example, [44]), whose kernel �(�; �; �) belongs to L2(Q�Q)for almost every � in Q?. Therefore, (ii) holds. If we go back to (3.34), we now haveZQ?Xn�1 kK� un(�; �)k2L2(Q) d�(2�)3 = ZQ? d�(2�)3 ZZ Q�Q j�(�;x; y)j2 dxdy;whence (3.26). It is easily seen that the same proof gives in fact the proof of the converseimplication (ii) ) (i) since at each step of the proof we have argued by equivalence.Let us now prove (3.27) and (3.28). For almost every y �xed in Q, we know from (3.25)that �(�; y) lies in L2(R3). Next, (3.27) and (3.28) are two equivalent formulations of theclaim that �(�;x; y) is obtained by applying the transformation U in x to �(x; y). By the way,let us note that, because of (3.20), this claim provides another proof of (3.26). Let us checkthat (3.27) holds. Let ' be �xed, say in S(R3), we check successively that(UK')�(x) = Xk2Z3 e�ik��(K')(x + k)= Xk2Z3 e�ik�� ZR3 �(x+ k; y)'(y) dy= Xk2Z3 e�ik�� ZR3 ��(y;x+ k)'(y) dy= Xk2Z3 e�ik�� ZQ? d�0(2�)3 ZQ Xl2Z3 eil��0��(y + l;x+ k)(U')�0(y) dy (3.35)= Xk2Z3 e�ik�� ZQ? d�0(2�)3 ZQ Xl2Z3 eil��0�(x+ k � l; y)(U')�0(y) dy= Xk2Z3 e�ik�� ZQ? d�0(2�)3 ZQ eik��0 Xl2Z3 e�il��0�(x+ l; y)(U')�0(y) dy= ZQ Xk2Z3 e�ik���(x+ k; y)(U')�(y) dy (3.36)= K�(U')�(x) = ZQ �(�;x; y)(U')�(y) dy;



3. Preliminaries 24with (3.19) to deduce (3.35), and the Poisson formula to obtain (3.36). This proves our claim.}We are now ready to state the de�nition of the admissible \periodic density matrices" weshall work with.Let K = RQ?K� d�(2�)3 be a self-adjoint operator in L2(R3) satisfying (H1). We shall saythat K is an admissible periodic density matrix ifK satis�es in addition to (H1) the followingproperties (H2){(H4) :(H2) 0 � K � 1,(H3) for almost every � in Q?, K� is a trace-class operator on L2�(Q), andZQ? TrL2�(Q)K� d�(2�)3 = 1; (3.37)(H4) for almost every � in Q?, ��� K� is a trace-class operator on L2�(Q), andZQ? TrL2�(Q)[��� K�] d�(2�)3 < +1; (3.38)where ��� is a notation for the operator ei��x (��per) e�i��x acting on L2�(Q), and with ��perdenoting the Laplace operator associated to periodic boundary conditions in Q. Actually,��� is equivalently de�ned by �� = RQ? ��� d�(2�)3 according to the de�nitions (3.21) and(3.23) of the Bloch waves decomposition (see [45]). The set of all admissible periodic densitymatrices is denoted by K. We collect in the forthcoming Proposition 3.2 various propertiesof the periodic density matrices in K, that have been proved in the course of this section.But, before that, let us introduce some functional spaces : for every � in Q?, and for every1 � p � +1, Lp�(Q) = f' 2 Lploc(R3) = �k � ' = ei k��';8 k 2 Z3g;and H1� (Q) = f' 2 H1loc(R3) = �k � ' = ei k��';8 k 2 Z3g:Proposition 3.2 Let K belong to K. Then,(i) K satis�es the equivalent properties given in Lemma 3.4.Let �(�; �; �) 2 L2(Q?;Q�Q) denote the Hilbert- Schmidt kernel of K�.(ii) For almost every � in Q?, there exists a complete set of eigenfunctions (un(�; �))n�1 ofK� in L2�(Q) corresponding to the non-increasing sequence of eigenvalues 0 � �n(�) � 1(counted with their multiplicity) such that un(�; �) 2 H1� (Q), � 7! un(�; �) 2 H, and suchthat �(�;x; y) =Xn�1�n(�) un(�;x) u�n(�; y);for almost every � in Q?.



4. The Reduced Hartree-Fock model 25(iii) For almost every � in Q?, x 7! �(�;x;x) is periodic, non-negative, belongs to L1unif(Q),and may be written �(�;x;x) =Xn�1�n(�) jun(�;x)j2 a.e. on Q:Hence, TrL2�(Q)K� = ZQ �(�;x;x) dx: In addition, we may de�ne �(x;x) by�(x;x) = ZQ? �(�;x;x) d�(2�)3 ; (3.39)and �(x;x) is a Q-periodic, non-negative function in L1unif(Q). And, we also haveZQ? TrL2�(Q)K� d�(2�)3 = ZQ? d�(2�)3 ZQ �(�;x;x) dx= ZQ?Xn�1 �n(�) d�(2�)3 = ZQ �(x;x) dx = 1: (3.40)
(iv) (H4) writesZQ? TrL2�(Q)[���K�] d�(2�)3 = ZQ?Xn�1 �n(�) d�(2�)3 ZQ jrun(�;x)j2 dx < +1: (3.41)Let us now turn to the thermodynamic limit problem for the RHF model.4 The Reduced Hartree-Fock modelThis section is devoted to the proof of Theorem 2.2 which has been stated in Section 2. Itis organized as follows. We begin with the hardest part of the work in Subsection 4.1, whichconsists in verifying that the lower limit of the energy per unit volume may be bounded frombelow by the periodic RHF model. Subsection 4.2 is then devoted to the proof of Theorem 2.1;that is of the well-posedness of the periodic RHF model. At last, with a minimizer of thisperiodic model at hand, we are able to check in Subsection 4.3 that the upper limit of theenergy per unit volume may be compared from above by the periodic RHF model.4.1 Lower limit of the energy per unit volumeIn this section, we bound from below the lower limit of IRHF�j�j as de�ned in (2.10){(2.11) bythe energy of the periodic RHF model (2.17){(2.18). For the sake of clarity, let us recall herethe de�nitions of these problems :IRHF� = inf�ERHF� (K) + 12U� ;K 2 K��;ERHF� (K) = Tr�(��� V�)K�+ 12D(�; �);



4. The Reduced Hartree-Fock model 26
IRHFper = inf�ERHFper (K) ; K 2 K�;ERHFper (K) = ZQ? TrL2�(Q)���K�� d�(2�)3 � ZQG�+ 12DG(�; �);where the meaning of �(x;x) is made precise in Proposition 3.2.Of course, our argument will still apply mutatis mutandis (this is even simpler) to thesmeared nuclei case (see (2.12), (2.19), (2.20)). We concentrate ourselves in the sequel on thepoint nuclei case.We shall use in a crucial way the fact that the RHF functional ERHF� (K) is convex withrespect to the density matrix K, when K belongs to the convex set K�, for any � � Z3.Indeed, this convexity property will allow us to use the �-transform trick that we havepreviously applied to the TFW model in [11]. Let us emphasize the fact that, since we failin obtaining local bounds on the electronic density in the RHF model (say, for example, L1bounds on �� independent of �), this is the only method among all the methods presentedin [11] which seems to go through to the RHF model.The sequel of this subsection is devoted to the proof of the followingProposition 4.1 Let � be a Van Hove sequence. Then,lim inf�!1 IRHF�j�j � IRHFper + M2 ;where IRHFper is de�ned by (2.17){(2.18).Proof of Proposition 4.1 : From now on, we shall denote by K� a minimizer of IRHF� , by��(�; �) its Hilbert-Schmidt kernel and by �� = ��(x;x) the (unique) corresponding electronicdensity. In particular, using the fact that K� admits a complete set of orthonormal eigen-functions ( n)n�1 belonging to H1(R3), associated to the eigenvalues 0 � �n � 1 (countedwith their multiplicity), we may write��(x; y) =Xn�1�n n(x) �n(y)and ��(x;x) =Xn�1�nj n(x)j2;where, here and in all that follows, we have on purpose omitted to mention the dependenceof the �n's and of the  n's on �, in order to simplify the notation. Let us recall thatTrL2(R3)K� =Xn�1�n ZR3 j n(x)j2 dx = j�j; (4.1)and that 0 � TrL2(R3)[��K�] =Xn�1�n ZR3 jr nj2 dx � C j�j; (4.2)



4. The Reduced Hartree-Fock model 27thanks to (3.10a). Generally speaking, the idea of the strategy detailed below, and whichdraws its inspiration from [11], is the following. We shall build a particular convex combinationfrom the operators K�, which is more or less a minimizing sequence of IRHF� , but whichconverges to a periodic density matrix, as � goes to in�nity. Moreover, this periodic densitymatrix will turn to be a minimizer of IRHFper . By analogy with the de�nition of the �-transformfor functions (see De�nition 3 in Section 2), we seteK� = 1j�jXk2� �k �K� � ��k: (4.3)Then, it is easy to check that eK� belongs to K�, that the Hilbert-Schmidt kernel of eK� ise��(x; y) = 1j�jXk2���(x+ k; y + k);while e��(x;x) coincides with the usual �-transform of �� as introduced in [11]. In particular,eK� also admits a complete set of orthonormal eigenfunctions ('n)n�1 belonging to H1(R3),associated to the eigenvalues 0 � �n � 1 (counted with their multiplicity), and, therefore, wemay write as for K� e��(x; y) =Xn�1�n'n(x)'�n(y)and e��(x;x) =Xn�1 �nj'n(x)j2:Of course, the analogues of (4.1) and (4.2) remain true for eK�.The proof is organized as follows. We �rst check that the sequence eK� de�ned by (4.3)converges in a sense to be made precise later to some operator eK belonging to K; that is, toa periodic density matrix (Step 1 ). Moreover, using the two facts that pe�� is bounded inH1unif(R3) (Corollary 3.2) and that its limit is necessarily periodic (Lemma 3.2), we alreadyinfer that pe�� converges weakly in H1loc(R3), strongly in Lploc(R3), for every 1 � p < 6,and almost everywhere on R3 to pe�, with e� being Q-periodic, non-negative, and such thatpe� 2 H1per(Q). The second step, which is much more involved, consists in verifying that thelimit e� of the density e�� associated to eK� is also the Q-periodic density which is associatedto the periodic density matrix eK according to (3.39) in Subsection 3.2, Proposition 3.2|(iii)(Step 2 ). Finally, we bound from below the lower limit of the energy per unit volume byERHFper ( eK) (Step 3 ), thereby concluding the proof of Proposition 4.1. Let us already say, atthis stage, that thanks to the proof of the upper limit (and thus of the limit), of the energyper unit volume we shall �nally deduce that eK is a minimizer of IRHFper , and therefore e� issimply �per, with �per denoting the unique periodic electronic density that corresponds toany minimizer of IRHFper . In particular, the whole sequence pe�� converges (and not only asubsequence) and its limit is independent of the choice of the Van Hove sequence �.Step 1 : We �rst check that the sequence eK� converges to some operator eK belongingto the set of periodic density matrices K, which is de�ned through properties (H1){(H4) inSubsection 3.2 (equivalent to De�nition 2 in Section 2).



4. The Reduced Hartree-Fock model 28Since the sequence of operators eK� is bounded in operators norm, we may extract a subse-quence if necessary in such way that eK� converges to some bounded operator eK in L2(R3)for the weak convergence of operators; that is( eK�'; ) �! ( eK'; ) as �!1;for all ' and  in L2(R3). In particular, eK is a self-adjoint operator in L2(R3) and 0 � eK � 1.Therefore, eK enjoys (H2).Let us check now that it also satis�es (H1); that is, let us prove thata) eK commutes with the translations which leave Z3 invariant.Let � be such a translation. We �x ' and  in L2(R3), and we intend to prove that([ eK; � ]'; )L2(R3) = 0:For this purpose, we make use of a standard argument of [11] which is based upon the factthat the sequence � is a Van Hove sequence. We just outline this argument here. We have[ eK�; � ] = 1j�j�Xk2� ��kK��k� �Xk2� ���kK��k�= 1j�j� Xk2��n� ���kK��k � Xk2�n�� ���kK��k�:Hence ����([ eK�; � ]'; )L2(R3)���� � j� n ��jj�j kK�k k'kL2(R3) k kL2(R3)= o(1)as � goes to in�nity. As the left-hand side converges to ([ eK; � ]'; )L2(R3), this shows theexpected invariance.According to the results and the notation of Section 3.2, we may write eK = RQ? eK� d�(2�)3with eK� being a self-adjoint operator in L2�(Q) such that 0 � eK� � 1, for almost every � inQ?.Having checked that (H1) and (H2) are satis�ed by eK, we next want to verify that eKsatis�es (H3). Namely, we now want to check that,b) for almost every � in Q?, the operator eK� has a �nite trace on L2�(Q), andZQ? TrL2�(Q) eK� d�(2�)3 = 1:According to Lemma 3.5 in Subsection 3.2, we denote by (un(�; �))n�1 an arbitrary Hilbertbasis of L2�(Q) for almost every � in Q?, and by 'n;p = ��p 'n the corresponding Hilbert basisof L2(R3). (Note that in fact, since K and the eK�'s are non-negative, it would be su�cient



4. The Reduced Hartree-Fock model 29to make the following argument for one given basis | see [44].) Then, we check successivelythat : 1 = 1j�jTrL2(R3)K� = 1j�jXn�1 Xp2Z3(K�'n;p;'n;p)� 1j�jXn�1Xp2�(K�'n;p;'n;p) =Xn�1 1j�jXp2�(�p �K���p � 'n;'n)= Xn�1( eK�'n;'n); (4.4)the inequality in the above string of equalities coming from the positiveness of K. Then,because of the weak convergence of eK� to eK, ( eK�'n;'n) converges to ( eK'n;'n), for everyn � 1, as � goes to in�nity. Now, since 0 � eK�, we know that the terms of the seriesappearing in the right-hand side of (4.4) are all non-negative. We may then appeal to thediscrete version of the Fatou lemma to infer that Pn�1( eK'n;'n) < +1, and thatlim inf�!1 Xn�1( eK�'n;'n) �Xn�1( eK'n;'n):Owing to the de�nitions (3.21) of the notation eK = RQ? eK� d�(2�)3 and (3.19) of the scalarproduct on H, we haveXn�1( eK'n;'n) = Xn�1ZQ?((U eK'n)�; (U'n)�)L2(Q) d�(2�)3= Xn�1ZQ?( eK�un(�; �);un(�; �))L2(Q) d�(2�)3= ZQ?Xn�1( eK�un(�; �);un(�; �))L2(Q) d�(2�)3= ZQ? TrL2�(Q) eK� d�(2�)3 :In particular, collecting with the above string of inequalities, we already know that, for almostevery � in Q?, eK� is a trace-class operator on L2�(Q) and thatZQ? TrL2�(Q) eK� d�(2�)3 � 1: (4.5)Moreover, denoting by e�(�;x; y), the Hilbert-Schmidt kernel of eK�, we may give a sense toe�(�;x;x) as a non-negative periodic function in L1(Q), such that TrL2�(Q) eK� = RQ e�(�;x;x) dx.In addition, thanks to (4.5), we may associate to eK, the non-negative Q-periodic density � eK ,which is de�ned by � eK(x;x) = RQ? e�(�;x;x) d�(2�)3 , and which belongs to L1(Q). In order toconclude the proof of (H3), it remains to show thatZQ? TrL2�(Q) eK� d�(2�)3 = 1: (4.6)



4. The Reduced Hartree-Fock model 30To prove this claim we shall actually prove in Step 2 below thate�(x) = � eK(x;x) = ZQ? e�(�;x;x) d�(2�)3 (4.7)for almost every x in Q, where e� is the limit of e��. Whence (4.6), thanks to (3.16) inCorollary 3.2.Admitting (4.7), for a while, we now claim that eK satis�es (H4) i.e. thatc) for almost every � in Q?, ��� eK� is a trace-class operator on L2�(Q), such thatZQ? TrL2�(Q)[��� eK�] d�(2�)3 < +1; (4.8)by proving that lim inf�!1 1j�jTrL2(R3)[��K�] � ZQ? TrL2�(Q)[��� eK�] d�(2�)3 : (4.9)The proof of (4.9) follows the same lines as the proof of (4.5). Indeed, let (un(�; �))n�1 and'n;p = ��p 'n be de�ned as before, with the additional assumptions that (un(�; �))n�1 2H1� (Q) for almost every � in Q?, and that the 'n;p's belong to H1(R3). Then, for the samereasons as before, we �nd1j�jTrL2(R3)[��K�] = 1j�jXn�1 Xp2Z3(K� (��)1=2'n;p; (��)1=2 'n;p)� Xn�1( eK� (��)1=2'n; (��)1=2 'n):Then, thanks to the weak convergence of eK� to eK, we have, for every n � 1,lim�!1( eK� (��)1=2'n; (��)1=2 'n)= ( eK (��)1=2'n; (��)1=2 'n) = ((��)1=2 eK (��)1=2'n;'n):Moreover, Fatou's lemma still applies since, on the one hand, for every � and n, we get((��)1=2 eK� (��)1=2'n;'n) � 0 ; while, on the other hand, we know from (3.10a) in Propo-sition 3.1, that 1j�jTrL2(R3)[��K�] is bounded independently of �. Therefore, passing to thelower limit as � goes to in�nity in the above inequalities, we get �rst thatXn�1(�� eK'n;'n) < +1;and next, thatlim inf�!1 1j�jTrL2(R3)[��K�] � lim inf�!1 Xn�1((��)1=2 eK� (��)1=2 'n;'n)� Xn�1( eK (��)1=2 'n; (��)1=2 'n)= ZQ?Xn�1( eK� (���)1=2 un(�; �); (���)1=2 un(�; �))L2(Q) d�(2�)3= ZQ? TrL2�(Q)[��� eK�] d�(2�)3 ;



4. The Reduced Hartree-Fock model 31since (��)1=2 = RQ?(���)1=2 d�(2�)3 . Hence (4.8) and (4.9).We turn now to the proof of (4.7)(thereby proving (4.6)); that is, the fact thatStep 2 : The limit of e��, e�, and the periodic density associated to eK, which is de�nedby � eK = RQ? e�(�;x;x) d�(2�)3 , coincide.We are �rst looking fora) A priori estimates on e��(x; y).Since K2� � K�, we have��(x) � ZR3 ��(x; y) ��(y;x) dy = ZR3 j��(x; y)j2 dy (4.10)almost everywhere on R3. Thanks to (4.10), we �rst check thate��(x) � ZR3 je��(x; y)j2 dy; (4.11)which in particular implies thate��(x; y) is bounded in L2(Q�R3) \ L2(R3 �Q) (4.12)independently of �, for e��(x) is bounded in L1(Q). Indeed, because of (4.10), we checksuccessively thate��(x) = 1j�jXk2���(x+ k;x+ k)� 1j�jXk2�ZR3 j��(x+ k; y)j2 dy = 1j�jXk2�ZR3 j��(x+ k; y + k)j2 dy� ZR3 je��(x; y)j2 dy;by convexity. We prove now thate��(x; y) is bounded in L2x(Q;H1y (R3)) \ L2y(Q;H1x(R3)) (4.13)independently of �, or, more precisely, thatZQ dy ZR3 j(1��)1=2x e��(x; y)j2 dx � C; (4.14)where C denotes here and below a positive constant that is independent of �. We emphasizethe fact that, in the following, we shall use the notation (1 � �)1=2x e��(�; �) for the Schwartzkernel of the operator (1 ��)1=2 eK�, which is also Pn�1 �n [(1 ��)1=2'n](�)'�n(�). Indeed,



4. The Reduced Hartree-Fock model 32we haveZQ dy ZR3 j(1 ��)1=2x e��(x; y)j2 dx = ZQ dy ZR3 ���� 1j�jXk2�(1��)1=2x ��(x+ k; y + k)����2 dx� 1j�jXk2�ZQ dy ZR3 j(1��)1=2x ��(x+ k; y + k)j2 dx= 1j�j Z�(�) dy ZR3 j(1��)1=2x ��(x; y)j2 dx� 1j�j ZR3 dy ZR3 j(1��)1=2x ��(x; y)j2 dx= 1j�j ZZ R3�R3 ����Xn�1�n[(1��)1=2 n](x) �n(y)����2 dxdy= 1j�j ZR3Xn�1�2n j(1��)1=2 n(x)j2 dx � 1j�jTrL2(R3)[(1��)K�]:The �rst inequality is deduced by a convexity argument, and the last one comes from (4.1),(4.2) and the fact that 0 � �n � 1. Finally, we conclude with the help of (3.10a) in Propo-sition 3.1. An easy consequence of (4.13) is that e��(x; y) is bounded in H1unif(R3 � R3),thus, up to a subsequence, it converges to some function ��(x; y) weakly in H1loc(R3 � R3),strongly in Lploc(R3 �R3), for every 1 � p < 3 (by the Rellich theorem for bounded domainsof R6), and almost everywhere on R6. Actually, because of the weak convergence of eK� toeK, ��(x; y) is nothing but e�(x; y), the Schwartz kernel of eK. Note that, in particular, we ob-tain from (4.12) (respectively (4.14)) that, up to a further subsequence, e��(x; y) (respectively(1��)1=2x e��(x; y)) converges to e�(x; y) (respectively (1��)1=2x e�(x; y)) weakly in L2(Qx�R3y).Therefore, we have ZQ dxZR3 je�(x; y)j2 dy < +1;and ZQ dy ZR3 j(1��)1=2x e�(x; y)j2 dx < +1:The �rst bound provides another proof of the fact that eK� is Hilbert-Schmidt on L2�(Q) foralmost every � 2 Q?, with kernel e�(�;x; y), and that e�(x; y) = RQ? e�(�;x; y) d�(2�)3 , by usingLemma 3.4.Our next step consists now in showing that(1��)1=2x e��(x+ y; y) is bounded in L1x (R3;L1y(Q)): (4.15)This claim will be a consequence of the following two bounds. First, since e�� is bounded inL1unif(R3), we clearly have supt2R3Xn�1 �n Zt+Q j'n(x)j2 dx � C: (4.16)



4. The Reduced Hartree-Fock model 33Next, we now prove that supt2R3Xn�1 �n Zt+Q j(1 ��)1=2'n(x)j2 � C: (4.17)Indeed, using the fact that the self-adjoint operators (1 � �)1=2K�(1 � �)1=2 and (1 ��)1=2 eK�(1��)1=2 are positive and trace-class with Hilbert-Schmidt kernels being respectivelyde�ned by Pn�1 �n[(1��)1=2 n](x) [(1��)1=2 n]�(y) and Pn�1 �n[(1��)1=2'n](x) [(1��)1=2'n]�(y), we may observe thatXn�1�nj(1 ��)1=2'n(x)j2 = 1j�jXn�1�nj(1 ��)1=2 n(x+ k)j2;almost everywhere on R3, thanks to the de�nition of eK�. Therefore, for every t in R3,Xn�1�n Zt+Qj(1 ��)1=2'n(x)j2 dx = 1j�jXn�1�n Zt+�(�) j(1��)1=2 n(x)j2 dx� 1j�jXn�1�n ZR3 j(1 ��)1=2 n(x)j2 dx� C 1j�j Tr[(1��)K�] � C;because of (3.10a). Let us now prove (4.15). For almost every x in R3, and by a repeateduse of the Cauchy-Schwarz inequality, we obtainZQ j(1��)1=2x e��(x+ y; y)j dy= ZQ����Xn�1�n [(1��)1=2'n](x+ y)'�n(y)���� dy� ZQ�Xn�1�n j(1��)1=2'n(x+ y)j2� 12 �Xn�1�n j'n(y)j2�12 dy� �ZQXn�1�n j(1��)1=2'n(x+ y)j2 dy� 12 �ZQXn�1�n j'n(y)j2 dy� 12 ;and (4.15) follows, thanks to (4.16) and (4.17).At this stage, we observe that (4.14) in particular yields(1��)1=2x e��(x+ y; y) is bounded in L2x(R3;L2y(Q)): (4.18)Therefore, by a standard interpolation argument,(1��)1=2x e��(x+ y; y) is bounded in Lpx(R3;Lp0y (Q)); (4.19)with 1p + 1p0 = 1, and for every 2 � p � +1. In particular, extracting a further subsequenceif necessary, we may assume that (1 � �)1=2x e��(x + y; y) converges to (1 � �)1=2x e�(x + y; y)weakly in Lpx(R3;Lp0y (Q)), for every 2 � p < +1.



4. The Reduced Hartree-Fock model 34b) Proof of (4.7).Let � be a continuous real-valued function, which is compactly supported in the unit cubeQ, and let us denote �� =Pk2� �(��k). (Note that �� has compact support in �(�).) Then,on the one hand, we have1j�jTrL2(R3)[K� ��] = 1j�j ZR3 �� �� = ZQ e�� �;and, thus, lim�!1 1j�jTrL2(R3)[K� ��] = ZQ e�(x) �(x) dx: (4.20)On the other hand, we now prove thatlim�!1 1j�jTrL2(R3)[K� ��] = ZQ dxZQ? e�(�;x;x) �(x) d�(2�)3 : (4.21)Since � is arbitrary, comparing (4.20) and (4.21) completes the proof of (4.7). We now prove(4.21), and we begin with recalling that the self-adjoint operator (1 ��)1=2K�(1 ��)1=2 isHilbert-Schmidt (and even trace-class) on L2(R3), with kernel (1��)1=2x (1��)1=2y ��(x; y) =Pn�1 �n[(1 ��)1=2 n](x) [(1 ��)1=2 n]�(y), for TrL2(R3)[(1 ��)K�] < +1. Besides, dueto the fact that �� is a continuous function with compact support, it is a known fact that theself-adjoint operator (1 � �)�1=2��(1 ��)�1=2 is Hilbert-Schmidt on L2(R3), whose kernelis denoted by ��(x; y). With these observations, we writeTrL2(R3)[K� ��]= TrL2(R3)[(1��)1=2K�(1��)1=2 (1��)�1=2��(1��)�1=2]= ZZ R3�R3�(1��)1=2x (1��)1=2y ��(x; y)���(x; y) dxdy= Xn�1�n ZR3 dx[(1��)1=2 n](x)�ZR3 ��(x; y) [(1 ��)1=2 n]�(y) dy� (4.22)thanks to Fubini's theorem. We shall now use the explicit form of the Hilbert-Schmidtkernel of (1 � �)�1=2��(1 � �)�1=2. Indeed, recalling that, by de�nition of (1 � �)�1=2,F [(1��)�1=2'](x) = (1+ jxj2)�1=2F'(x) (where F denotes the Fourier transform), it is notdi�cult to verify that, if ' is, say, in the Schwartz class, we have(1��)�1=2' = G1 ? '; (4.23)where G1 is a function in L1(R3) whose Fourier transform is simply the function (1+ jxj2)�1=2(2 Lp(R3), for every 3 < p � +1). The function G1 is a special kind of Bessel functions,and, from [53], for example, we know that G1 is a non-negative radially symmetric function,such that G1(x) � C1 exp(�12 jxj); for jxj large enough;and G1(x) = C2 1jxj2 + o� 1jxj2� ; as jxj ! 0 ;



4. The Reduced Hartree-Fock model 35for some positive constants C1 and C2. In particular, G1 actually belongs to L3=2;1(R3) \Lp(R3), for every 1 � p < 32 .Therefore, for any continuous function # with, say, a compact support, the Schwartz kernelof (1��)�1=2#(1��)�1=2 may be written as RR3 G1(x� z)#(z)G1(z � y) dz.Then, by de�nition of ��,ZR3 ��(x; y) [(1 ��)1=2 n]�(y) dy= (1��)�1=2�� (1��)�1=2 �[(1 ��)1=2 n]�� (x)= (1��)�1=2(��  �n) = G1 ? (��  �n):Thus, using again Fubini's theorem,Xn�1�n ZR3 dx[(1 ��)1=2 n](x)�ZR3 ��(x; y) [(1 ��)1=2 n]�(y) dy�= ZZ R3�R3 G1(x� y)��(y)�Xn�1�n[(1��)1=2 n](x) �n(y)� dxdy= ZZ R3�R3 G1(x� y)��(y)(1 ��)1=2x ��(x; y) dxdy:Therefore, we deduce, comparing with (4.22),1j�jTrL2(R3)[K� ��] = 1j�j ZZ R3�R3 G1(x� y)��(y)(1��)1=2x ��(x; y) dxdy= 1j�j Z�(�) dy ZR3 G1(x� y)��(y)(1 ��)1=2x ��(x; y) dx= 1j�jXk2�ZQ dy ZR3 G1(x� k � y)�(y)(1��)1=2x ��(x; y + k) dx= 1j�jXk2�ZQ dy ZR3 G1(x� y)�(y)(1��)1=2x ��(x+ k; y + k) dx= ZQ dy ZR3 G1(x� y)�(y)(1��)1=2x e��(x; y) dx= ZQ dy ZR3 G1(x)�(y)(1��)1=2x e��(x+ y; y) dx:We now make use of the two facts that (1��)1=2x e��(x+y; y) converges to (1��)1=2x e�(x+y; y),weakly in, say L4x(R3;L4=3y (Q)), and that G(x) �(y) belongs to L4=3x (R3)�L4y(Q). Therefore,lim�!1 1j�jTrL2(R3)[K� ��] = ZQ dy ZR3 G1(x)�(y)(1��)1=2x e�(x+ y; y) dx= ZQ dy ZR3 G1(x� y)�(y)(1��)1=2x e�(x; y) dx= ZQ dxZQ? �(x) e�(�;x;x) d�(2�)3 :



4. The Reduced Hartree-Fock model 36Indeed, we �rst observe that the self-adjoint operator (1��)�1=2 is bounded on L2(R3) andcommutes with the group of the translations of Z3. Therefore, we may apply the abstractBloch wave decomposition (that is explained in Section 3.2) to (1 � �)�1=2, and we have(1��)�1=2 = RQ?(1��)�1=2� d�(2�)3 , with the operator (1��)�1=2� being de�ned by�U(1��)�1=2'�� (x) = (1��)�1=2� (U')� = ZQG�(x� y) (U')� (y) dythanks to (4.23), for every ' in L2(R3), and for almost every x in Q and � in Q?, and where,according to (4.23), G�(t) = Xk2Z3 e�i k��G1(t+ k):(Note that, from the de�nition of (��)�, (1��)�1=2� = (1���)�1=2.) Finally, we concludeas followsZQ dy ZR3 G1(x� y)�(y)(1��)1=2x e�(x; y) dx= ZQ �(y) dy ZQ dxZQ? G�(x� y)[(1���)1=2x e�](�;x; y) d�(2�)3= ZQ �(y) dyXn�1 ZZ Q�Q? G�(x� y)�n(�)[(1 ��)1=2� un(�; x)]u�n(�; y) d�dx(2�)3=Xn�1 ZZ Q�Q? �(y)�n(�)u�n(�; y)�ZQG�(x� y)(1��)1=2� un(�; x) dx� d�dy(2�)3= ZQ �(y) dyXn�1ZQ? �n(�) jun(�; y)j2 d�(2�)3= ZQ �(y) dy ZQ? e�(�; y; y) d�(2�)3 :This completes the proof of (4.21).The kinetic energy term being settled with (4.9), we now turn toStep 3 : Lower limit of the sum of the electrostatic terms. Conclusion.We shall �rst rewrite the sum of electrostatic terms in a more convenient (and equivalent)manner which has been introduced in [11, Section 3.4]. We shall only sketch the argumentand refer the reader to [11] for more details. The electrostatic terms in the energy are thefollowing�TrL2(R3)�V�K��+ 12D(��; ��) + 12U� = �ZR3 V��� + 12D(��; ��) + 12U�: (4.24)Denoting by f�(x) =Pk2� � 1jx�kj � RQ dyjx�k�yj� = V����(�) ? 1jxj , we rewrite the sum of theelectrostatic terms as follows12Xz2� limx!zx6=z �f�(x)� 1jx� zj�+ 12 Z�(�) f�� Z�(�) f� �� + 12D(��(�) � ��; ��(�) � ��): (4.25)



4. The Reduced Hartree-Fock model 37We next remark (see [11, Chapter 2]) that we havelim��!1 1j�jXz2� limx!zx6=z �f�(x)� 1jx� zj� = lim��!1 limx!0x6=0 � ef�(x)� 1jxj� =M + d; (4.26)where d is some constant which is related to our choice of normalization for the potential Gand which is de�ned in [11]. In addition, we havelim��!1 1j�j Z�(�) f� = lim��!1ZQ ef� = ZQ(G+ d) = d; (4.27)and lim�!1 1j�j ZR3 f� �� = d+ ZQG(y) e�(y) dy: (4.28)Therefore, if we prove thatlim inf�!1 1j�jD(��(�) � ��; ��(�) � ��) � DG(e�; e�); (4.29)we shall easily deduce from (4.26), (4.27), (4.28), and the formulation (4.25) of the sum ofthe electrostatic terms (4.24) thatlim inf��!1 1j�j��Tr�V�K��+ 12D(��; ��) + 12U��� �ZQG(y) e�(y) dy + 12DG(e�; e�) + M2 : (4.30)We now prove (4.29). Let us de�ne g� = (��(�) � ��) ? 1jxj . It is a standard fact that1j�jD(��(�) � ��; ��(�) � ��) = 1j�j ZR3 jrg�j2 � ZQ jreg�j2: (4.31)From the bound (3.10e) in Proposition 3.1, we deduceZQ jreg�j2 � C;where eg� is de�ned, as usual, by eg� = 1j�jPk2� g�(�+k). Thus, reg� is bounded in L2unif(R3)3independently of �. Therefore, extracting a subsequence if necessary, we may assume thatthere exists eh in L2unif(R3)3, such that reg� converges to eh 2 L2unif(R3)3, for the weak conver-gence in L2loc(R3)3, and curl eh = 0, in the sense of distributions. Moreover, from Poincar�e'stheorem, there exists eg in D0(R3) (which is uniquely de�ned, up to a constant), such thateh = reg, still in the sense of distributions. In addition, since eg� satis�es��eg� = �div(reg�) = 4� �e��(�) � e���;we deduce that eg is a solution to�div(reg) = ��eg = 4� [1� e�]; (4.32)



4. The Reduced Hartree-Fock model 38in D0(R3) (see [11]). With (4.31), we obtainlim inf�!1 1j�jD(��(�) � ��; ��(�) � ��) � ZQ jregj2:Now, we notice that we already know another solution to (4.32), namely�g(x) = ZQG(x� y)(1� e�(y)) dy = �ZQG(x� y)e�(y) dy; (4.33)thanks to the normalization (2.14) on G. The function �g is periodic and satis�esZQ jr�gj2 = ZQ���g � �g = DG(e�; e�);thanks to (4.32), for RQ �g = 0. We are going to show thatZQ jregj2 � ZQ jr�gj2: (4.34)For this purpose, we �rst remark that @1eg � @1�g (where @1 denotes the �rst derivative withrespect to the �rst coordinate x1 of R3) is an harmonic function, for eg and �g are two solutionsto the same Laplace equation (4.32).Now, both @1eg (as the limit of @1eg�) and @1�g (by construction, see (4.33)) are in L2unif(R3).Therefore, @1eg � @1�g is an harmonic function which belongs to L2unif(R3), and thus is aconstant, that we denote by a1 (use for instance the mean-value inequality). The sameargument applies to the �rst derivatives with respect to the coordinates x2 and x3. Hence weobtain eg � �g = a � x+ b;where a = (a1; a2; a3) and b are two �xed vectors of R3. It follows from this equality, thatZQ jregj2 = ZQ jr(�g + a � x+ b)j2= ZQ jr�gj2 + ZQ jaj2 + 2ZQ a � r�g= ZQ jr�gj2 + ZQ jaj2� ZQ jr�gj2;since RQ a � r�g = a � RQr�g = 0 because of the periodicity of �g. The inequality (4.34) follows,from which we deduce easily (4.29) and (4.30).



4. The Reduced Hartree-Fock model 39At this stage, we collect (4.9) with (4.30) to obtainlim inf�!1 IRHF�j�j = lim inf�!1 1j�j�TrL2(R3)�(��� V�)K��+ 12D(��; ��) + 12U��� ZQ? TrL2�(Q)[��� eK�] d�(2�)3 � ZQG e�+ 12DG(e�; e�) + M2= ERHFper ( eK) + M2� IRHFper + M2 : (4.35)This concludes the proof of Proposition 4.1. }Before turning to the study of the upper limit of the energy per unit volume, we cananticipate a little bit and assume that we have already provenIRHFper + M2 � lim sup�!1 1j�jIRHF� ; (4.36)which will be the purpose of Proposition 4.2 below. It will follow from the comparison of(4.35) and (4.36) that all equalities in these strings of inequalities (4.9), (4.30), (4.35), (4.36)are indeed equalities. In particular, we shall recoverlim�!1 1j�jTrL2(R3)[��K�] = ZQ? TrL2�(Q)[��� eK�] d�(2�)3 ; (4.37)and we shall also obtain that eK is a minimizer of IRHFper .In order to prove that the upper limit behaves in the expected way, we shall make use of theminimizer of (2.17) (it is not stricto sensu necessary, as we might use an almost minimizer).Therefore, we devote the next section to the study of problem (2.17), and in particular to theproof of Theorem 2.1. We shall come back to the proof of the upper limit (4.36), and thusconclude the proof of Theorem 2.2, in Subsection 4.3.4.2 The periodic RHF problemWe begin this section with the proof of Theorem 2.1, that we recall here for the convenienceof the reader.Theorem 2.1 (Well-posedness of the RHF periodic model)The minimization problem de�ned by (2.17){(2.18), i.e.IRHFper = inffERHFper (K) ; K 2 Kg;ERHFper (K) = ZQ? TrL2�(Q)����K�� d�(2�)3 � ZQG�+ 12DG(�; �);(respectively in the smeared nuclei case by equations (2.19){(2.20) in Section 2) admits a min-imum. In addition, the minimizing density �(x;x) is unique and, thus, shares the symmetriesof the unique cube.



4. The Reduced Hartree-Fock model 40Before we begin with the proof, let us at once remark that the argument we are going tomake will be also useful in the Hartree-Fock case for the proof of Theorem 2.3 in Section 5below. As the Reduced Hartree-Fock model is convex, another strategy than the one we shalluse below could have been chosen. However, we have chosen on purpose a strategy of proofthat will be also valid for the non-convex Hartree-Fock model. This will simplify our task inSection 5. Let us also remark that we only do the proof in the point nuclei case, and thatadapting our argument to the smeared nuclei case (2.19){(2.20) is straightforward. Let usalso mention at this stage that some of our arguments are similar to those used by E.H. Lieb,J. P. Solovej and J. Yngvason in [34], where a close problem is studied.Proof of Theorem 2.1Let us consider a minimizing sequence Kn for the minimization problem (2.17){(2.18).For each n, the operator Kn may be decomposed into operators Kn� . We denote by �n(�; x; y)the kernel of Kn� , and by �n(x; y) = RQ? �n(�; x; y) d�(2�)3 the Schwartz kernel of Kn, accordingto Lemma 3.4. More precisely, we have, in view of Proposition 3.2,�n(�; x; y) =Xp�1 �(n)p (�) u(n)p (�; x) u(n)p (�; y)�:In the right-hand side, the index n, referring to the index in the minimizing sequence Kn, hasbeen put into parentheses in order to avoid ambiguity with powers of up. Since, in addition,Kn� is trace-class on L2�(Q), we may also de�ne�n(�; x; x) =Xp�1 �(n)p (�) ju(n)p (�; x)j2;which is a non-negative, periodic function in L1(Q), such that TrL2�(Q)Kn� = RQ �n(�; x; x) dx.Moreover, let us recall from Proposition 3.2, that the density �(x;x) which appears in thede�nition (2.18) of the energy functional is also a non-negative periodic function in L1(Q)(at least) de�ned by �(x;x) = RQ? �n(�; x; x) d�(2�)3 . Our �rst step consists in �nding somebounds, independent of n, on the operators Kn and on the functions �n(�; �) and �n(�; �; �).Step 1: A priori estimates on the minimizing sequenceFirst of all, we remark that the following bound holds obviously0 � Kn� � 1;for almost every � in Q?, which comes straightforwardly from Lemma 3.3. In view of thedecomposition of the operators Kn� along their eigenbasis, let us rewrite the kinetic energyterm: ZQ? TrL2�(Q)����Kn� � d� = ZQ?Xp�1 �(n)p (�)ZQ jru(n)p (�; x)j2 dxd�: (4.38)Next, we remark that the constraint of charge 1, namelyZQ? TrL2�(Q)Kn� d�(2�)3 = 1



4. The Reduced Hartree-Fock model 41may also be written asZQ? d�(2�)3 ZQ �n(�;x;x) dx = ZQ?Xp�1 �(n)p (�) d�(2�)3= ZQ �n(x;x) dx = 1: (4.39)Another consequence of this constraint isZQ? d�(2�)3 ZZ Q�Q j�n(�; x; y)j2 dxdy= ZQ?Xp�1Xq�1 �(n)p (�)�(n)q (�)��ZQ u(n)p (�; x)u(n)q (�; x)�dx��2 d�(2�)3= ZQ?Xp�1Xq�1 �(n)p (�)�(n)q (�) �p;q d�(2�)3= ZQ?Xp�1 j�(n)p (�)j2 d�(2�)3� ZQ?Xp�1 �(n)p (�) d�(2�)3 = 1;whence �n(�; x; y) is bounded in L2(Q? �Q�Q); (4.40)or, equivalently, because of (3.26) in Lemma 3.4,�n(x; y) is bounded in L2(Q�R3): (4.41)(Note that actually �n(x; y) is bounded in L2unif(R3;L2(R3)), thanks to the translation in-variance.) We are now going to work on the energy functional. Owing to the convexity of thefunction f 7! RQ jrpf j2, and because of (4.39), we haveZQ jrp�n(x; x)j2 dx = ZQ����r�ZQ?Xp�1 �(n)p (�)ju(n)p (�; x)j2 d�(2�)3 �1=2����2 dx� ZZ Q�Q?Xp�1 �(n)p (�)��rju(n)p (�; x)j��2 dxd�(2�)3� ZZ Q�Q?Xp�1 �(n)p (�)��ru(n)p (�; x)��2 dxd�(2�)3= ZQ? TrL2�(Q)����Kn� � d�(2�)3 ; (4.42)the second inequality being true since jrjf jj � jrf j for any complex-valued function f . Letus now observe that��ZQG(x)�n(x; x) dx�� � C kGkL2(Q) k�nk3=4L1(Q) k�nk1=4L3(Q)� C kGkL2(Q) kp�nk1=2H1(Q)� C kGkL2(Q) (1 + krp�nk2L2(Q))1=4 (4.43)



4. The Reduced Hartree-Fock model 42since G is L2 on Q (it has only a singularity like 1jxj) and k�nkL1(Q) = 1, and where C denoteshere and below some positive constant that is independent of n. Inserting (4.42) and (4.43)into the de�nition (2.18) of the energy, and noticing that 12DG(�; �) � 0, we obtain that wehave, for the minimizing sequence Kn ,p�n(x; x) is bounded in H1(Q); and thus in Lp(Q) 1 � p � 6: (4.44)This can also be expressed by stating thatZQ? TrL2�(Q)����Kn� � d� = ZZQ�Q?Xp�1 �(n)p (�)jru(n)p (�; y)j2 dxd� (4.45)is bounded independently of n.Using the Cauchy-Schwarz inequality as followsj�n(x; y)j = ����ZQ?Xp�1 �(n)p (�)u(n)p (�; x)u(n)p (�; y)� d�(2�)3 ����� �ZQ?Xp�1 �(n)p (�)ju(n)p (�; x)j2 d�(2�)3� 12�ZQ?Xp�1 �(n)p (�)ju(n)p (�; y)j2 d�(2�)3� 12= p�n(x; x)p�n(y; y); (4.46)we obtain a direct corollary of the bound (4.44):�n(x; y) is bounded in Lp(Q�Q); 1 � p � 6: (4.47)Another corollary of these bounds is obtained by using the convexity of the function f 7!RR Q�Q? jrpf j2 dxd�, it isp�n(�; x; x) is bounded in L2(Q?;H1(Q)): (4.48)Finally, a very useful bound is obtained from (4.45) by using the Lieb-Thirring inequality inthis setting. (This is an easy adaptation of the Lieb-Thirring inequality in the periodic casegiven in the Appendix of [54] for �nite-rank projectors together with the results of [39] for itsextension to general density matrices.) We have, for almost every � 2 Q?,ZQ �n(�; x; x)5=3dx � C0 TrL2�(Q)�(1���)Kn� �;for some constant C0, which may be chosen independently of �, since � lies in a boundedsubset of R3, and therefore by integration on Q? (since the left-hand side lies in L1(Q?)),ZQ? d�(2�)3 ZQ �n(�; x; x)5=3 dx � C ZQ? TrL2�(Q)�(1��)�Kn� � d�(2�)3 :This shows that �n(�; x; x) is bounded in L5=3(Q? �Q); (4.49)and concludes our �rst step, devoted to the a priori bounds on the sequence Kn.



4. The Reduced Hartree-Fock model 43Step 2: Passing to the limit in the constraintLet us �rst remark that, in view of the bound (4.40), we may assume without loss ofgenerality that the sequence �n(�; x; y) converges weakly in L2(Q?�Q�Q) to some �1(�; x; y).According to the formal decomposition given in [45], and recalled in Section 3.2, we may nowde�ne a self-adjoint operator K1 on L2(R3), by K1 = RQ?K1� d�(2�)3 , where K1� is theHilbert-Schmidt operator on L2�(Q) whose kernel is the function �1(�; x; y). Another wayto state the weak convergence of �n to �1 is to say that for almost � 2 Q?, and for anyself-adjoint operator L on L2(R3), such that L = RQ? L� d�(2�)3 , where the operators L� areHilbert-Schmidt operators on L2�(Q), whose kernels L(�; x; y) belong to L2(Q?;L2(Q � Q)),we have limn�!+1ZQ? TrL2�(Q)[Kn� � L�� ] d�(2�)3 = ZQ? TrL2�(Q)[K1� � L�� ] d�(2�)3 : (4.50)Clearly, the operators K1� satisfy 0 � K1� � 1, and thus 0 � K1 � 1.A second consequence of the bounds of Step 1 comes from (4.44). Again, we may alwaysassume that the sequencep�n(x; x) converges weakly in H1per(Q), strongly in Lp(Q), 1 � p <6, and almost everywhere on R3, to some function p��1(x; x) 2 H1per(Q).A third consequence of the bounds of Step 1 is deduced from (4.49): we may suppose thatthe sequence of (non-negative) functions �n(�; x; x) converges weakly in L5=3(Q?�Q) to some(non-negative) function that we denote for the moment by ��1(�; x; x).Let us �rst prove that RQ? ��1(�; x; x) d�(2�)3 = ��1(x; x). For this purpose, we note that theweak convergence in L5=3(Q? �Q) implies in particular that, for any function v 2 L5=2(Q),limn�!+1ZQ? d�(2�)3 ZQ �n(�; x; x)v(x) dx = ZQ? d�(2�)3 ZQ ��1(�; x; x)v(x) dx:Now, the left-hand side is also given bylimn�!+1ZQ�ZQ? �n(�; x; x) d�(2�)3 �v(x)dx = limn�!+1ZQ �n(x; x) v(x) dx;and thus by limn�!+1ZQ �n(x; x) v(x) dx = ZQ ��1(x; x)v(x)dx:Therefore, we have ZQ? ��1(�; x; x) d�(2�)3 = ��1(x; x): (4.51)At this stage, we do not know a priori that �1(�; x; x) = ��1(�; x; x), but we shall provethis claim below in Step 3.Let us now turn to the proof of the fact that the operator K1 necessarily satis�es theconstraint : ZQ? TrL2�(Q)K1� d�(2�)3 = 1: (4.52)



4. The Reduced Hartree-Fock model 44The di�culty to deduce (4.52), from the convergence (4.50) and the fact that the aboveconstraint is satis�ed for all n, is of course that we cannot take L as being the identityoperator in (4.50), for the identity is not a Hilbert-Schmidt operator. In order to conclude,we shall need to use the bound on the kinetic energy term. We argue as follows.For all n, and for almost all � 2 Q?, we know that Kn� and ���Kn� are trace-classoperators on L2�(Q). In particular, this implies that the operator (1 � �)1=2� Kn� (1 � �)1=2�is also trace-class (thus in particular Hilbert-Schmidt). In addition, since we have a bound,derived from (4.45) and (4.38),ZQ? TrL2�(Q)�(1��)1=2� Kn� (1��)1=2� � d� = ZQ? TrL2�(Q)[(1��)�Kn� ] d� � C;we may assume, extracting a subsequence if necessary, that the sequence of operators RQ?(1��)1=2� Kn� (1��)1=2� d�(2�)3 converges in the sense of (4.50), and its limit is necessarily RQ?(1��)1=2� K1� (1��)1=2� d�(2�)3 . Testing this weak convergence with the operators L� = (1��)�1� ,which are Hilbert-Schmidt on L2�(Q), we obtainlimn�!+1ZQ? TrL2�(Q)�(1��)1=2� Kn� (1��)1=2� (1��)�1� � d�= ZQ? TrL2�(Q)�(1��)1=2� K1� (1��)1=2� (1��)�1� � d�;that is limn�!+1ZQ? TrL2�(Q)Kn� d� = ZQ? TrL2�(Q)K1� d�:Therefore, as RQ? TrL2�(Q)Kn� d�(2�)3 = 1 for all n, we deduce that the operator K1 satis�es theconstraint.Step 3: Passing to the limit in the energyA simple argument, using the operator (1 � �) and Fatou's lemma allows one to show,arguing as in the proof of Proposition 4.1, and making use of Step 2, thatlim infn�!+1�1 + ZQ? TrL2�(Q)����Kn� � d�� = lim infn�!+1ZQ? TrL2�(Q)�(1���)Kn� � d�� limn�!+1ZQ? TrL2�(Q)�(1���)K1� � d�(2�)3= 1 + ZQ? TrL2�(Q)����K1� � d�(2�)3 ;and, therefore, thatlim infn�!+1ZQ? TrL2�(Q)����Kn� � d�(2�)3 � ZQ? TrL2�(Q)����K1� � d�(2�)3 : (4.53)



4. The Reduced Hartree-Fock model 45Next, a standard argument on the sequence �n(x; x), whose square root converges in H1per(Q),shows that limn�!+1��ZQG(x)�n(x; x)dx + 12DG(�n(x; x); �n(x; x))�= �ZQG(x)��1(x; x)dx + 12DG(��1(x; x); ��1(x; x)): (4.54)It is then clear that (4.53) along with (4.54) will su�ce to establish the existence of a minimizerfor the periodic RHF model, provided we are able to show that, for almost every � 2 Q? andx 2 Q, ��1(�; x; x) = �1(�; x; x): (4.55)We �nally prove this fact. For this purpose, we choose an arbitrary function �(�; x) 2 L1(Q?�Q), and de�ne the Hilbert-Schmidt operatorsL� = (1��)�1=2� �(�; �)(1��)�1=2� :Using the convergence (4.50) for the sequence of operators (1��)1=2� Kn� (1��)1=2� , we havelimn�!+1ZQ? TrL2�(Q)�(1��)1=2� Kn� (1��)1=2� (1��)�1=2� �(�; �)(1 ��)�1=2� � d�= ZQ? TrL2�(Q)�(1��)1=2� K1� (1��)1=2� (1��)�1=2� �(�; �)(1��)�1=2� � d�:This may also readlimn�!+1ZZ Q?�Q �n(�; x; x)�(�; x) dxd� = ZZ Q?�Q �1(�; x; x)�(�; x) dxd�:But on the other hand, we know that the sequence of functions �n(�; x; x) converges weaklyin L5=3(Q? �Q) to ��1(�; x; x), thus we also havelimn�!+1ZZ Q?�Q �n(�; x; x)�(�; x) dxd� = ZZ Q?�Q ��1(�; x; x)�(�; x) dxd�:This shows the equality (4.55), and concludes the proof of the existence of a minimum. Wenow show the uniqueness of the periodic density �(x;x). The argument is an adaptation of asimilar claim in [34]. Assume by contradiction that there exist two minimizers K1 and K2 inK of IRHFper . Denoting by �1 and �2 their respective density, it is easily checked thatERHFper (K) = 12ERHFper (K1) + 12ERHFper (K2)� 18DG(�1 � �2; �1 � �2)= IRHFper � 18DG(�1 � �2; �1 � �2):We thus have DG(�1��2; �1��2) = 0. Now, since G, �1 and �2 are periodic, we may rewriteDG(�1 � �2; �1 � �2) with the help of the Fourier coe�cients of �1 � �2, and G. Since theFourier series expansion of G writes (see [32])G(x) = 1� Xn2Z3nf0g 1jnj2 e2i� n�x;



4. The Reduced Hartree-Fock model 46we observe that DG(�1��2; �1��2) = 0 if and only if �1��2 is constant. But, RQ �1��2 = 0,hence �1 = �2. In particular, in the above proof, the whole sequence p�n(x;x) converges top�1(x;x) and not only a subsequence. }Before concluding this section, let us write down the Euler-Lagrange equations satis�ed bya minimizer K of IRHFper . Using the decomposition of K in K along an eigenbasis of each K�,when � describes Q?, we may reformulate the minimization problem IRHFper in the followingway : IRHFper is obtained by minimizingZQ?Xn�1 �n(�)ZQ�jrun(�; x)j2 �G(x)jun(�; x)j2� dxd�(2�)3+ 12 ZZ Q?�Q? d�d�0(2�)6 Xn;m�1 �n(�)�m(�0)ZZ Q�Q jun(�; x)j2G(x� y)jum(�0; y)j2 dxdysubject to the constraints8>>>>>>>>><>>>>>>>>>:
ZQ?Xn�1�n(�) d�(2�)3 = 1;0 � �n(�) � 1; for all n � 1; and for almost all � 2 Q?;ZQ un(�; x)u�m(�; x) dx = �n;m; for almost all � 2 Q?: (4.56)

The Euler-Lagrange equations satis�ed by a minimizerK of IRHFper can then be easily written.They exhibit the Lagrange multipliers �, �0n(�), �1n(�), "nm(�), respectively associated to theconstraints of (4.56). More precisely, we obtain, for almost every � in Q?, and for every n � 1,8>>>>>>>>>>><>>>>>>>>>>>:
��un(�; �) �Gun(�; �) + Xm�1�m(�)(um(�; �)2�Q ? G)un(�; �)= Xm�1 "nm(�)um(�; �); a.e. on Q;ZQ�jrun(�; x)j2 �G(x)jun(�; x)j2� dx+ Xm�1 �m(�)DG(jun(�; �)j2; jum(�; �)j2)= �0n(�) + �1n(�) + �: (4.57)

Since ERHFper (K) is independent of the choice of an eigenbasis for K�, we may assumewithout loss of generality that the matrix of "nm(�) is diagonal, for almost every � in Q?;in other words, the right-hand side term Pm�1 "nm(�)um(�; �) in the �rst equation of (4.57)may be replaced by "n(�)un(�; �). Moreover, owing to the fact that the Lagrange multipliers�0n(�) and �1n(�) are respectively associated to the constraints 0 � �n(�) and �n(�) � 1, theysatisfy, for all n � 1 and for almost every � in Q?,�0n(�)(= 0; if �n(�) > 0;� 0; if �n(�) = 0; (4.58a)



4. The Reduced Hartree-Fock model 47�1n(�)(= 0; if �n(�) < 1;� 0; if �n(�) = 1: (4.58b)We now apply un(�; �) to the �rst equation of (4.57), next integrate over Q, and, �nally, insertthe result into the second equation of (4.57), to obtain, using (4.58a) and (4.58b),8><>:�n(�) = 0 =) "n(�) � �;0 < �n(�) < 1 =) "n(�) = �;�n(�) = 1 =) "n(�) � �: (4.59)4.3 Upper limit of the energy per unit volume and conclusionIn order to conclude the proof of Theorem 2.2, we now prove theProposition 4.2 We assume that the Van Hove sequence � satis�es (2.21), and that theunit cell Q is a cube. Then, lim sup�!1 IRHF�j�j � IRHFper + M2 ; (4.60)where IRHFper is de�ned by (2.17){(2.18).Remark 4.1 As stated in Theorem 2.2, the same result holds true in the smeared nuclei case,if we assume moreover that m shares the symmetries of the unit cube Q, and de�ne M in aconvenient way.As a corollary of Proposition 4.1 and Proposition 4.2 (and the slight modi�cations whichare necessary to treat the smeared nuclei case), we shall obtain Theorem 2.2.Proof of Proposition 4.2 : Let us denote by K a minimizer of the periodic RHF problem.As usual, we may decompose K into operators K� (� 2 Q?), whose kernels �(�; x; y) may bewritten as �(�; x; y) =Xn�1�n(�)un(�; x)un(�; y)�:We denote �(x; y) = ZQ? �(�; x; y) d�(2�)3 :Let now � be �xed. We build a cut-o� function �� 2 D(R3) satisfying the following proper-ties : 8<: 0 � �� � 1 ;�� � 1 on fx 2 �(�); d(x; @�(�)) � 2g ;�� � 0 on �(�)c :In addition, we choose �� in such a way that it also satis�esZR3 �2�(x)�(x; x)dx = j�j+ o(j�j):



4. The Reduced Hartree-Fock model 48We next consider the operator K� on L2(R3) whose kernel is��(x; y) = ��(x)�(x; y)��(y): (4.61)A simple computation shows that(K� ; )L2(R3) = (K(�� ); (�� ))L2(R3);and therefore we have 0 � K� � 1. The choice of �� ensures also that TrL2(R3)K� =j�j+ o(j�j) � j�j.We now compute the RHF energy of K�.Since ��(x; x) = �2�(x)�(x; x), it is a simple matter, arguing as in [11] and using theperiodicity of �(x; x), to show that the electrostatic terms�ZR3 V��� + 12D(��; ��) + 12U�behave like j�j��ZQG�+ 12DG(�; �) + M2 �;as � goes to in�nity. This is precisely where we need the assumption (2.21), the fact that Q isa cube, and that �(x;x) shares the symmetries of the unit cube. Both facts play a fundamentalrole | see the details in [11]. Therefore, we concentrate ourselves on the behaviour of thekinetic energy term. We intend to prove thatlim��!1 1j�jTrL2(R3)[��K�] = ZQ? TrL2�(Q)[���K�] d�(2�)3 (4.62)which will of course conclude the proof of Proposition 4.2.Let us denote by ('m)m�1 an Hilbertian basis of L2(R3). We begin with��K�'m = ���ZR3 ��(x; y)'m(y) dy�= ZR3 ����(x; y)��(x)���(y)'m(y) dy= �ZZ R3�Q?Xn�1�n(�)��un(�; x)��(x)�un(�; y)���(y)'m(y) dyd�(2�)3Hence,(��K�'m; 'm)L2(R3)= ZZ R3�Q?Xn�1�n(�)�ZR3 ���un(�; x)��(x)�'�m(x)dx� un(�; y)���(y)'m(y) dyd�(2�)3 :



4. The Reduced Hartree-Fock model 49Summing up next in m, we obtainXm�1(��K�'m; 'm)L2(R3) = ZR3 dy ZQ?Xn�1�n(�)un(�; y)���(y)Xm�1�ZR3 ���un(�; x)��(x)�'�m(x) dx�'m(y) d�(2�)3= ZR3 dy ZQ?Xn�1�n(�)un(�; y)���(y)���un(�; y)��(y)� d�(2�)3= ZQ? d�(2�)3 Xn�1�n(�)ZR3 un(�; y)���(y)���un(�; y)��(y)� dy= ZQ? d�(2�)3 Xn�1�n(�)ZR3 jr(un(�; y)��(y))j2 dy:We have therefore obtainedTrL2(R3)[��K�] = ZQ? d�(2�)3 Xn�1�n(�)ZR3 jr(un(�; x)��(x))j2 dx: (4.63)We now remark thatZR3 jr(un(�; x)��(x))j2 dx = ZR3 j��(x)r(un(�; x)) + un(�; x)r��(x)j2 dx= ZR3 j��(x)j2jr(un(�; x))j2 + ZR3 jun(�; x)j2jr��(x)j2 dx+2 ZR3 ��(x)u�n(�; x)run(�; x) � r��(x) dxEach of the three integrals in the right-hand side may be restricted on �(�), for �� vanishesoutside this domain. In addition, the third integral may be restricted on the \boundary"@� = fx 2 �(�); d(x; @�(�)) � 2g of �(�), as r�� � 0 in the \interior" �(�) n @� of �(�).Therefore, we haveZQ? d�(2�)3 Xn�1�n(�)ZR3 jr(un(�; x)��(x))j2 dx = I1� + I2� + 2 I3�; (4.64)where I1�, I2�, I3� denote respectivelyI1� = ZQ? d�(2�)3 Xn�1�n(�)Xk2�ZQ j��(x+ k)j2jr(un(�; x+ k))j2 dxI2� = ZQ? d�(2�)3 Xn�1�n(�)Xk2� ZQ jun(�; x+ k)j2jr��(x+ k)j2 dxI3� = ZQ? d�(2�)3 Xn�1�n(�)Z@� ��(x)u�n(�; x)run(�; x) � r��(x) dx:



5. The Hartree-Fock model 50As � is a Van Hove sequence, we expect that the integrals over the \boundary" of �(�) arenegligible with respect to j�j, or, in other words, that only the integrals over the \interior"of �(�) play a role in identifying the limit per unit volume. Indeed, it is easy to see, by astandard argument that we have already used in [11] and that is based upon the propertiesof �� and of un(�; �), thatI1� = j�jZQ? d�(2�)3 Xn�1�n(�)ZQ jr(un(�; x))j2 dx+ o�j�j�= j�jZQ? TrL2�(Q)[���K�] d�(2�)3 + o�j�j�; (4.65)and I2� = o�j�j� ZQ? TrL2�(Q)[���K�] d�(2�)3 : (4.66)Finally, we may bound I3� as followsjI3�j � o�j�j� ZQ?Xn�1�n(�)�ZQ jr(un(�; x))j2� 12�ZQ jun(�; x)j2� 12 d�� o�j�j� ZQ?�Xn�1�n(�)ZQ jr(un(�; x))j2� 12�Xn�1�n(�)ZQ jun(�; x)j2� 12 d�� o�j�j��ZQ?Xn�1�n(�)ZQ jr(un(�; x))j2� 12�ZQ?Xn�1�n(�)ZQ jun(�; x)j2� 12= o�j�j��ZQ? TrL2�(Q)[���K�] d�(2�)3� 12 ; (4.67)by a repeated use of the Cauchy-Schwarz inequality. Inserting (4.65), (4.66), (4.67) into(4.64), next in (4.63), we obtainTrL2(R3)[��K�] = j�jZQ? TrL2�(Q)[���K�] d�(2�)3 + o�j�j�;which shows (4.62) and concludes the proof of the proposition. }5 The Hartree-Fock modelLet us �rst of all recall the Hartree-Fock model (2.3){(2.4){(2.5) introduced in Section 2 :IHF� = inffEHF� (K) + 12U� ; K 2 K�g;where the set of minimization isK� = f0 � K � 1; Tr K = j�j; Tr�(��� V�)K� < +1g;



5. The Hartree-Fock model 51and the energy functional writesEHF� (K) = Tr�(��� V�)K�+ 12 ZZR3�R3 �(x; x)�(y; y)jx� yj dxdy � 12 ZZR3�R3 j�(x; y)j2jx� yj dxdy;where �(x; y) is the Hilbert-Schmidt kernel of K. As is well-known, this functional is notconvex, and therefore we expect the thermodynamic limit problem to be much more di�cultthan in the Reduced Hartree-Fock setting. In this latter case, we have used in a fundamentalway the convexity of the energy functional through the use of the �-transform. Here, for theHartree-Fock case, this is not possible any more. Let us at once say that this is the mainreason why we are not able to prove a result on the convergence of the Hartree-Fock energyper unit volume in the thermodynamic limit, and why we cannot establish the analogue ofTheorem 2.2. Nevertheless, in this section, we shall (a) give some formal computations inorder to justify our guess on the periodic Hartree-Fock problem (2.23){(2.24){(2.25) thatshould be obtained in the thermodynamic limit, (b) show that this periodic problem is well-posed mathematically (Theorem 2.3 in Subsection 5.1 below), and, �nally, (c) check that theupper limit of the Hartree-Fock energy per unit volume may at least be compared from aboveby the HF periodic problem (Proposition 2.1 in Subsection 5.2).Let us begin with some formal computations on the Hartree-Fock energy of a minimizerK� of IHF� when � goes to in�nity.We postulate that the sequence of operators K� converges to some self-adjoint operatorK that commutes with the translation of Z3, and that belongs to K. By saying so, the mainassumption we do is the following one : We postulate that the density ��(x; x) asymptoticallybehaves like a Q-periodic density �(x; x). We emphasize this is an assumption, and that weonly have the intuition that it is true. The lack of convexity of the Hartree-Fock model hasprevented us so far to prove this postulate.In view of the results we have obtained on the Reduced Hartree-Fock model, it is thenreasonable to believe that in the energy (2.5) of a minimizer K� of (2.3){(2.4){(2.5)EHF� (K�) = Tr�(��� V�)K��+ 12 ZZR3�R3 ��(x; x)��(y; y)jx� yj dxdy � 12 ZZR3�R3 j��(x; y)j2jx� yj dxdy;the �rst three terms globally behave like j�j�ERHFper (K) + M2 �:Therefore, it remains to understand, at least formally, the behaviour of the so-calledexchange term �12 ZZ R3�R3 j��(x; y)j2jx� yj dxdy. For this purpose, let us replace the densitymatrix ��(x; y) by a matrix of the form ��(x)�(x; y)��(y) mimicking the argument we havemade above to determine the upper limit of the RHF model. The function �� is a cut-o�function, which has all the good properties the reader may think of, and which are recalled inthe proof of Proposition 2.1 below. Then, we establish, still in the course of Proposition 2.1in Subsection 5.2 below, thatlim�!1 1j�j ZZ R3�R3 j��(x; y)j2jx� yj dxdy = ZZ Q�R3 j�(x; y)j2jx� yj dxdy:Moreover, the quantity which appears in the right-hand side of the above equality makessense thanks to the following



5. The Hartree-Fock model 52Lemma 5.1 For any K in K, we haveZQ dxZR3 j�(x; y)j2jx� yj dy < +1;and ZQ dxZR3 j�(x; y)j2jx� yj dy (5.1a)= ZZZZ(Q?)2�Q2 �(�; x; y)W1(� � �0; x� y)��(�0; x; y) dxdy d�d�0(2�)6 ; (5.1b)where the potential W1 is given by (2.25) in Section 2 ; that isW1(�; z) = Xk2Z3 eik��jz + kj :The proof of this lemma is given below.The above argument justi�es, at least formally, the introduction of the periodic problem(2.23){(2.24){(2.25), that we recall now :IHFper = inffEHFper (K) ; K 2 Kg;EHFper (K) = ZQ? TrL2�(Q)����K�� d�(2�)3 � ZQG�+ 12DG(�; �)� 12Eexc(K);where we denote by Eexc(K) any of the two equivalent formulations (5.1a) and (5.1b) of theperiodic exchange term. Before proving in the forthcoming subsection that the HF periodicproblem is well-posed, we give now the proof of Lemma 5.1.Proof of Lemma 5.1: We decompose the exchange term in two terms in the following wayZQ dxZR3 j�(x; y)j2jx� yj dy= ZQ dxZjx�yj�1 j�(x; y)j2jx� yj dy + ZQ dxZjx�yj�1 j�(x; y)j2jx� yj dy:For the second term, we clearly haveZQ dxZjx�yj�1 j�(x; y)j2jx� yj dy � ZQ dxZR3 j�(x; y)j2 dy < +1:Let us concentrate now on the �rst term. Since we may prove like in (4.46) that j�(x; y)j2 ��(x) �(y), almost everywhere on R3 �R3, we may writeZQ dxZjx�yj�1 j�(x; y)j2jx� yj dy � ZQ dxZjx�yj�1 �(x) �(y)jx� yj dy� ZZ (Q+B1)�(Q+B1) �(x) �(y)jx� yj dxdy� C k�k2L6=5(Q+B1)� C k�k2L6=5unif(R3) < +1;



5. The Hartree-Fock model 53since � lies in H1unif(R3). We check now the equivalence of the two formulations (5.1a) and(5.1b), which follows from the following string of equalities :ZZQ�R3 j�(x; y)j2jx� yj dxdy = ZZQ�R3 1jx� yj dxdy ZZQ?�Q? �(�; x; y)��(�0; x; y) d�d�0(2�)6= ZZZZQ2�(Q?)2 Xk2Z3 1jx� y � kj�(�; x; y + k)��(�0; x; y + k) dxdy d�d�0(2�)6= ZZZZQ2�(Q?)2 �(�; x; y)��(�0; x; y) Xk2Z3 e�i(���0)�kjx� y � kj dxdy d�d�0(2�)6= ZZZZQ2�(Q?)2 �(�; x; y)W1(� � �0; x� y)��(�0; x; y) dxdy d�d�0(2�)6 ;where we have used the properties of periodicity of the functions �(�; x; y) with respect to y,and the de�nition (2.25) of W1.And the proof of Lemma 5.1 is complete. }This section is organized as follows. We �rst prove in Subsection 5.1 that the periodic HFproblem is well-posed. Next, in Subsection 5.2, we check that we may compare from abovethe Hartree-Fock energy per unit volume with this periodic problem, by using a minimizer ofIHFper .5.1 The periodic HF problemThis section is devoted to the proof of Theorem 2.3, that we recall here for the convenienceof the reader.Theorem 2.3 (Well-posedness of the HF periodic problem) The minimization problemde�ned by (2.23) and (2.24) (respectively by (2.26) and (2.27)) admits a minimum.We shall provide two di�erent proofs of this claim. The �rst one makes use of regularityproperties of the potential W (�; z) given by (2.25), and which appears when one writes theexchange terms according to the Bloch waves decomposition. The second one, which is alsothe shortest one, is based upon the formulation (5.1a) of the exchange term.First proof of Theorem 2.3 : In order to check that the minimization problem (2.23){(2.24){(2.25) is well-posed, we now prove that, given an arbitrary sequence of operators Kn(2 K) such that EHFper (Kn) goes to IHFper , as n goes to in�nity, this sequence converges, up toan extraction of a subsequence, to some operator K (2 K) that satis�es EHFper (K) = IHFper . Forthis purpose, we shall heavily rely upon the proof of Theorem 2.1. But, �rst of all, we beginour proof with a careful study of the properties of regularity of the interaction potential W1and consequently of the properties of the exchange term.Step 1: Decomposition of the exchange potentialWe �rst remark that the function ei��xW1(�; x) is Q-periodic with respect to x when � is



5. The Hartree-Fock model 54�xed. Indeed, j 2 Z3 being �xed, we haveei��(x+j)W1(�; x + j) = ei��xei��j Xk2Z3 eik��jx+ j + kj= ei��x Xm2Z3 eim��jx+mj = ei��xW1(�; x);for almost all (�; x) 2 Q? � Q. We may therefore decompose ei��xW1(�; x) into its Fourierseries: ei��xW1(�; x) = Xm2Z3 am(�)e2i�m�x;with coe�cients am(�) given byam(�) = ZQ ei��xW1(�; x)e�2i�m�x dx = ZQ ei(��2�m)�x Xk2Z3 eik��jx+ kj dx= Xk2Z3 ZQ ei(��2�m)�(x+k) 1jx+ kj dx= ZR3 ei(��2�m)�y 1jyj dy = 4�j� � 2�mj2 ;for almost all � 2 Q?. Hence, we haveW1(�; x) = 4� e�i��x Xm2Z3 e2i�m�xj� � 2�mj2 : (5.2)It is easily deduced from this expression that, with x being �xed in Q, the function de�ned byW1(�; x)� 4� e�i��xj�j2 is continuous with respect to � 2 Q?, and even to � 2 (1 + ")Q (" > 0,small enough), and satis�eslim��!0�W1(�; x)� 4� e�i��xj�j2 � = Xm2Z3nf0g e2i�m�x�jmj2 = G(x):Since we have isolated the singularity in �, let us now examine the singularity in x. Let usthen consider f(�; x) =W1(�; x) � e�i��xG(x)� 4� e�i��xj�j2 : (5.3)We now check that f(�; x) is in L1(Q? �Q), and even in L1((1 + ")Q? � (1 + ")Q). From(5.2) and the Fourier series expansion of G, we obtainf(�; x) = 4� e�i��x Xm2Z3nf0g e2i�m�x� 1j� � 2�mj2 � 1j2�mj2�= 4� e�i��x Xm2Z3nf0g e2i�m�x 4� � �m� j�j2j� � 2�mj2 j2�mj2 : (5.4)



5. The Hartree-Fock model 55It is obvious from the last equality that, at �xed �, ei��xf(�; x) is Q-periodic with respect tox, and that kf(�; �)k2L2(Q) � C Xm2Z3nf0g 1 + jmj2j� � 2�mj4 j2�mj4 ;for some positive constant which is independent of � 2 (1 + ")Q?; in other words, for any" > 0 small enough, kf(�; �)k2L2(Q) 2 L1((1 + ")Q?): (5.5)With � being still �xed in (1 + ")Q?, it is clear from (5.3) that��xf(�; x) = 4� Xk2Z3nf0g�e�ik�� � 1��k(x);and thus f(�; x) is harmonic in (1+")Q. With the help of the mean-value property, we �nallyobtain for every x in Q,jf(�; x)j � Zx+"Q jf(�; y)j dy � C kf(�; �)k1=2L2(Q);and we conclude since the right-hand side in the above inequality lies in L1(Q?) thanks to(5.5).Next, we remark that the exchange term involves the function W1(� � �0; x � y) with �and �0 varying in Q?, and x and y varying in Q. Therefore, we need some information onW1(�; x) on 2Q? � 2Q = [�2�;+2�[3�[�1;+1[3. In a straightforward way, for almost all� 2 [�2�;+2�[3, x 2 [�1;+1[3, we obtain from (5.3) the decompositionW1(�; x) =W1(�; x)� Xk2Z3;jkj1�1 1jx+ kj � 4� e�i��x Xm2Z3;jmj1�1 e2i�m�xj� � 2�mj2 ; (5.6)with jxj1 = max(jx1j; jx2j; jx3j), and where W1(�; x) belongs to L1(2Q? � 2Q), owing inparticular to the fact that G(x)�Pk2Z3;jkj1�1 1jx+kj is bounded in 2Q? � 2Q.Step 2: A priori estimatesUsing the decomposition (5.6), let us now show that the a priori estimates that have beenestablished in Step 1 of the proof of Theorem 2.1 also hold true here.Since some estimates only depend on the constraints and not on the energy functional, itis easy to see that the following bounds of the RHF setting are also valid here:8<: �n(�; x; y) is bounded in L2(Q? �Q�Q);�n(x; y) is bounded in L2(Q�R3);�n(x; x) is bounded in L1(Q): (5.7)



5. The Hartree-Fock model 56Next, we are going to estimate the exchange term by splitting it into three terms accordingto the decomposition (5.6). First, we have����ZZZZQ2�(Q?)2 �n(�; x; y)W1(� � �0; x� y)��n(�0; x; y) dxdy d�d�0����� kW1kL1 ZZZZQ2�(Q?)2 j�n(�; x; y)j j��n(�0; x; y)j dxdy d�d�0� kW1kL1 jQ?jZZZQ2�Q? j�n(�; x; y)j2 dxdyd� � C; (5.8)by the Cauchy-Schwarz inequality and (5.7), where C denotes here and below various positiveconstants that are independent of n.Next, we treat for instance the term :����ZZZZQ2�(Q?)2 �n(�; x; y) 1jx � yj�?n(�0; x; y) d�d�0(2�)6 dxdy����= ZZ Q�Q j�n(x; y)j2jx� yj dxdy � ZZ Q�Q �n(x; x)�n(y; y)jx� yj dxdy; (5.9)since we recall that, by the discrete and next the continuous Cauchy-Schwarz inequality, wehave j�n(x; y)j = ����ZQ?Xn�1�n(�)un(�; x)u�n(�; y) d�(2�)3 ����� ZQ?�Xn�1 �n(�)jun(�; x)j2� 12 �Xn�1�n(�)jun(�; y)j2�12 d�(2�)3� �ZQ?Xn�1�n(�)jun(�; x)j2 d�(2�)3� 12�ZQ?Xn�1�n(�)jun(�; y)j2 d�(2�)3� 12� p�n(x; x)p�n(y; y):Thus, we have in (5.9)����ZZZZQ2�(Q?)2 �n(�; x; y) 1jx � yj��n(�0; x; y) dxdy d�d�0(2�)6 ����� ZQ �n(x; x)(�n(�; �)�Q ? 1jxj ) dx� C  1jxjL3;1 k�n(x; x)k2L6=5(Q)� C  1jxjL3;1k�n(x; x)k3=2L1(Q) k�n(x; x)k1=2L3(Q):



5. The Hartree-Fock model 57using Young's and then H�older's inequality. Next, using the Sobolev embeddings and (5.7),we obtain ����ZZZZQ2�(Q?)2 �n(�; x; y) 1jx � yj��n(�0; x; y) d�d�0(2�)6 dxdy����� C  1jxjL3;1 k�n(x; x)k3=2L1(Q) kp�n(x; x)kH1(Q)� C  1jxjL3;1 k�n(x; x)k3=2L1(Q) �1 + krp�n(x; x)kL2(Q)�1=2: (5.10)Finally, we treat the contribution of the third term in (5.6), namely����ZZZZQ2�(Q?)2 �n(�; x; y)e�i(���0)�(x�y)j� � �0j2 ��n(�0; x; y) d�d�0(2�)6 dxdy����� ZZQ�Q(j�n(�; x; y)j ?Q? 1j�j2 ) j�n(�; x; y)jL1(Q?) dxdy;where, here and below, we shall use the notation f ?Q? g(�) = RQ? f(�� �0) g(�0) d�0(2�)3 . By theYoung and the H�older inequalities, we have, with x and y being �xed, (j�n(�; x; y)j ?Q? 1j�j2 ) j�n(�; x; y)j L1(Q?)�  j�n(�; x; y)j ?Q? 1j�j2L2(Q?) �n(�; x; y)L2(Q?)�  1j�j2L1(Q?) �n(�; x; y)2L2(Q?):Therefore, ����ZZZZQ2�(Q?)2 �n(�; x; y)e�i(���0)�(x�y)j� � �0j2 ��n(�0; x; y) d�d�0(2�)6 dxdy�����  1j�j2L1(Q?) ZZ Q�Q k�n(�; x; y)k2L2(Q?) dxdy=  1j�j2L1(Q?) �n(�; x; y)2L2(Q?�Q2) � C; (5.11)in view of (5.7). We now collect (5.8), (5.10), and (5.11), and estimate the exchange term asfollows ����ZZZZQ2�(Q?)2 �n(�; x; y)W1(� � �0; x� y)��n(�0; x; y) d�d�0(2�)6 dxdy����� C + C krp�n(x; x)kL2(Q): (5.12)It remains now to copy the proof of Theorem 2.1 : The kinetic energy term is boundedfrom below by krp�n(x; x)k2L2(Q), and therefore the fact that the energy of the minimizing



5. The Hartree-Fock model 58sequence converges to the in�mum implies that krp�n(x; x)kL2(Q) is bounded. Consequently,all the bounds shown in the RHF setting still hold here :8>><>>: p�n(x; x) is bounded in H1(Q); thus in Lp(Q) 1 � p � 6;�n(x; y) is bounded in Lp(Q�Q); 1 � p � 6;p�n(�; x; x) is bounded in L2(Q?;H1(Q));�n(�; x; x) is bounded in L5=3(Q? �Q); (5.13)and each of the four terms of the energy (2.24) is bounded independently of n. As a conse-quence of (5.13), we show the following bound that will be useful in Step 3:�n(x; y) is bounded in H1(Q�Q): (5.14)Indeed, we havejrx�n(x; y)j = ����ZQ? Xm�1 �m(�)rxum(�; x)u�m(�; y) d�(2�)3 ����� ZQ?�Xm�1 �m(�)jrxum(�; x)j2�1=2�Xm�1 �m(�)jum(�; y)j2�1=2� �ZQ? Xm�1 �m(�)jrxum(�; x)j2�1=2�ZQ? Xm�1 �m(�)jum(�; y)j2�1=2:Hence,ZZ Q�Q jrx�n(x; y)j2 dxdy� ZZQ�Q? Xm�1 �m(�)jrxum(�; x)j2 dxd�(2�)3 ZZQ�Q? Xm�1�m(�)jum(�; y)j2 dyd�(2�)3= ZQ? TrL2�(Q)[���K�] d�(2�)3 k�n(x; x)kL1(Q) � C:This yields (5.14).Step 3: Convergence of the exchange termIn view of the bounds (5.7), (5.13), (5.14), we may choose a subsequence of Kn, stilldenoted by Kn, such that the following convergences hold:8<: �n(�; x; y) converges weakly in L2(Q? �Q�Q);�n(�; x; x) converges weakly in L5=3(Q? �Q);�n(x; y) converges strongly in Lp(Q�Q); 1 � p < 6: (5.15)The last convergence holds, because by Rellich's theorem, (5.14) implies that �n(x; y) stronglyconverges (up to the extraction of a subsequence) in Lp(Q2) for all 1 � p < 3. But sincewe have in addition the second bound of (5.7), the interpolation inequality yields the strongconvergence in Lp(Q2) for all 1 � p < 6. Let us denote by K = RQ?K� d�(2�)3 the operator thatis the limit of Kn in the sense of the operators weak topology, and in the sense of (4.50) |



5. The Hartree-Fock model 59the latter being equivalent to the �rst convergence of (5.15). Let �(�; x; y) denotes the kernelof the associated K� : It is indeed clear that K 2 K for the same reasons as those indicated inthe proof of Theorem 2.1. In particular, K still satis�es the constraint of charge 1. Likewise,we have lim infn�!+1ZQ? TrL2�(Q)����Kn� � d�(2�)3 � ZQ? TrL2�(Q)����K�� d�(2�)3 ;and the electrostatic terms converge as they do in the RHF setting. Concluding the proofof Theorem 2.3 amounts therefore to proving that we may pass to the limit in the exchangeterm, or in other words thatlimn�!+1 ZZZZQ2�(Q?)2 �n(�; x; y)W1(� � �0; x� y)��n(�0; x; y) d�d�0dxdy= ZZZZQ2�(Q?)2 �(�; x; y)W1(� � �0; x� y)��(�0; x; y) d�d�0dxdy: (5.16)In order to prove (5.16), we again decompose the interaction potential W1(�; �) accordinglyto (5.6). We treat each of the three categories of terms separately, proving the analogue of(5.16) for each of them. The assertion (5.16) will then follow by addition.We begin with provinglimn�!+1 ZZZZQ2�(Q?)2 �n(�; x; y)W1(� � �0; x� y) ��n(�0; x; y) d�d�0dxdy= ZZZZQ2�(Q?)2 �(�; x; y)W1(� � �0; x� y) ��(�0; x; y) d�d�0dxdy:Clearly, it su�ces to provelimn�!+1 ZZZZQ2�(Q?)2[�n(�; x; y) � �(�; x; y)]W1(� � �0; x� y)��n(�0; x; y) d�d�0dxdy = 0: (5.17)For this purpose, we observe that��ZZZZQ2�(Q?)2[�n(�; x; y)� �(�; x; y)]W1(� � �0; x� y) ��n(�0; x; y) d�d�0(2�)6 dxdy��� ZZQ�Q ��ZQ? �n(�; x; y) d�(2�)3 � ZQ? �(�; x; y) d�(2�)3 ��jW1(� � �0; x� y)j ��ZQ? ��n(�0; x; y) d�0(2�)3 �� dxdy� kW1kL1 ZZQ�Q j�n(x; y) � �(x; y)j j�n(x; y)j dxdy� kW1kL1 k�n(x; y)� �(x; y)kL2(Q2) k�n(x; y)kL2(Q2);and (5.17) follows from the strong convergence of �n(x; y) to �(x; y) in L2(Q2).



5. The Hartree-Fock model 60For the second term, we remark that����ZZZZQ2�(Q?)2�j�n(x; y)j2 � j�(x; y)j2� 1jx� yj dxdy����� C  1jx� yjL2(Q2) j�n(x; y)j2 � j�(x; y)j2L2(Q2)where the right-hand side converges to zero because �n(x; y) converges to �(x; y), strongly inL4(Q2), thus j�n(x; y)j2 converges to j�(x; y)j2, strongly in L2(Q2) .It now remains to treat the third term of (5.6), namely for instance to provelimn�!+1 ZZZZQ2�(Q?)2 �n(�; x; y)��n(�0; x; y)e�i(���0)�(x�y)j� � �0j2 d�d�0dxdy= ZZZZQ2�(Q?)2 �(�; x; y)��(�0; x; y)e�i(���0)�(x�y)j� � �0j2 d�d�0dxdy:We introduce the functionFn(�; x; y) = ZQ? ��n(�0; x; y)e�i(���0)�(x�y)j� � �0j2 d�0(2�)3 ; (5.18)and the analogous function F when �n is replaced by �. What we have to prove is thatlimn�!+1ZZZQ2�Q? [�n(�; x; y)Fn(�; x; y)� �(�; x; y)F (�; x; y)] d�dxdy = 0; (5.19)and for this purpose it su�ces to show that �n(�; x; y) converges weakly to �(�; x; y) in L2(Q?�Q2), which we already know by (5.15), and that Fn(�; x; y) converges strongly to F (�; x; y) inL2(Q? �Q2), which we now establish (up to the extraction of a subsequence).Since e�i��(x�y)j�j2 belongs to L1(Q�Q;L1(Q?)), and since �n(�; x; y) is bounded in L2(Q?�Q2), we easily deduce from Young's inequality thatFn(�; x; y) is bounded in L2(Q? �Q�Q):Likewise, the generalized Young inequality for the Marcinkiewicz spaces (or weak Lp spaces)implies Fn(�; x; y) is bounded in L6(Q? �Q�Q); (5.20)using this time that e�i��(x�y)j�j2 belongs to L3=2;1(Q?).Let us now prove that Fn(�; x; y) is bounded in W 1=2;1(Q? � Q2). This will imply by theSobolev embeddings theorem that Fn(�; x; y) is relatively compact in Lp(Q? � Q2), for all1 � p < 1918 . In view of (5.20), H�older's inequality yields the compactness in all Lp(Q? �Q2),for all 1 � p < 6, and thus in particular the desired L2(Q? � Q2) compactness. To provethat Fn(�; x; y) is bounded in W 1=2;1(Q? � Q2), we prove that Fn(�; x; y) is bounded both



5. The Hartree-Fock model 61in L1(Q2;W 1=2;1(Q?)) and in L1(Q?;W 1=2;1(Q2)). The second bound is an immediate conse-quence of the fact that Fn(�; x; y) is bounded in L2(Q?;H1(Q2)). The latter fact holds becauseboth �n(�; x; y) and rx�n(�; x; y) are bounded in L2(Q? �Q2), e�i��(x�y)j�j2 2 L1(Q2;L1(Q?)),and rxFn(�; x; y) = rx��n(�; x; y) ?Q? e�i��(x�y)j�j2 + ��n(�; x; y) ?Q? rxe�i��(x�y)j�j2 :In order to show that Fn(�; x; y) is bounded in L1(Q2;W 1=2;1(Q?)), we remark �rst that1j�j2 2 L1(Q2;W 1=2;1(Q?), thusFn(�; x; y)W 1=2;1(Q?) = �n(�; x; y) ?Q? e�i��(x�y)j�j2 W 1=2;1(Q?)� �n(�; x; y)L1(Q?)  1j�j2W 1=2;1(Q?)whence we deduceFn(�; x; y)L1(Q2;W 1=2;1(Q?)) � �n(�; x; y)L1(Q?�Q2)  1j�j2W 1=2;1(Q?):This concludes the �rst proof of (5.16), and thus the proof of Theorem 2.3. }Second proof of Theorem 2.3 : We may observe that we can modify the argument whichis used in Step 3 above by proving the following.Lemma 5.2 For any minimizing sequence Kn 2 K of IHFper , we havelimn!+1ZQ dxZR3 j�n(x; y)j2jx� yj dy = ZQ dxZR3 j�(x; y)j2jx� yj dy: (5.21)Proof of Lemma 5.2: The proof of the above Lemma 5.1 yields in particular that theexchange term RQ dx RR3 j�n(x;y)j2jx�yj dy is bounded independently of n, with the help of (5.13).Moreover, in view of (5.15), j�n(x; y)j2 converges to j�(x; y)j2 almost everywhere on R3�R3.Then, by Fatou's lemma, we deduce thatlim infn!+1 ZQ dxZR3 j�n(x; y)j2jx� yj dy � ZQ dxZR3 j�(x; y)j2jx� yj dy:In order to prove the reverse inequality for the upper limit, we argue as follows. Let R > 0be �xed, we may writeZQ dxZR3 j�n(x; y)j2jx� yj dy = ZQ dxZjx�yj�R j�n(x; y)j2jx� yj dy + ZQ dxZjx�yj�R j�n(x; y)j2jx� yj dy:On the one hand, we obtainZQ dxZjx�yj�R j�n(x; y)j2jx� yj dy � 1R ZQ dxZR3 j�n(x; y)j2 dy= 1R k�n(�;x; y)k2L2(Q?�Q�Q) � CR; (5.22)



5. The Hartree-Fock model 62for some positive constant C that is independent of n, and because of the bound (5.13) on�n. On the other hand, we know from (5.15), that �n(x; y) converges to �(x; y) strongly inL4loc(R3 � R3). Thus, j�n(x; y)j2 converges to j�(x; y)j2 strongly in L2loc(R3 � R3). Since1jx�yj�jx�yj�R(x; y) belongs to L2loc(R3 �R3), we clearly obtain, for any �xed R > 0,limn!+1ZQ dxZjx�yj�R j�n(x; y)j2jx� yj dy = ZQ dxZjx�yj�R j�(x; y)j2jx� yj dy: (5.23)Collecting (5.22) and (5.23), and letting n, and then R, go to in�nity, we �nally obtainlim supn!+1 ZQ dxZR3 j�n(x; y)j2jx� yj dy � ZQ dxZR3 j�(x; y)j2jx� yj dy:The proof is now complete. }We shall now write down the system of Euler-Lagrange equations satis�ed by any mini-mizer K of IHFper . These equations look like very much the usual Hartree-Fock equations inMolecular Chemistry, and are likely to be the analogues in the periodic setting of the well-known Hartree-Fock equations. The form of these equations is very similar to the one wehave derived for the periodic RHF model, namely (4.57) {(4.59), except for an extra termwhich comes from the exchange term. Arguing by analogy with the periodic RHF model, weobtain the following system of Euler-Lagrange equations, for almost every � in Q?, and forevery n � 1,8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:

��un(�; �)�Gun(�; �) + Xm�1 �m(�)�ZQ um(�; y)2G(� � y) dy�un(�; �)�ZZ Q?�Q �(�0;x; y)W1(� � �0;x� y)un(�; y) dy d�0(2�)3= Xm�1 "nm(�)um(�; �); a.e. on Q;ZQ(jrun(�; x)j2 �G(x) jun(�; x)j2) dx+ Xm�1 �m(�)DG(jun(�; �)j2; jum(�; �)j2)� ZZZQ?�Q2 �(�0;x; y)W1(� � �0;x� y)u�n(�; x)un(�; y) dxdy d�0(2�)3= �0n(�) + �1n(�) + �;
(5.24)

with �(�0;x; y) = Pm�1 �m(�0)um(�0; x)u�m(�0; y), and where the Lagrange multipliers �,�0n(�), �1n(�), "nm(�) are respectively associated to the set of constraints8>>>>>>>>><>>>>>>>>>:
ZQ?Xn�1�n(�) d�(2�)3 = 1;0 � �n(�) � 1; for all n � 1; and for almost all � 2 Q?;ZQ un(�; x)u�m(�; x) dx = �n;m; for almost all � 2 Q?: (5.25)



5. The Hartree-Fock model 63Since, once more, EHFper (K) is independent of the choice of an eigenbasis for K�, we mayassume without loss of generality that the matrix of "nm(�) is diagonal, for almost every �in Q?; under this assumption, the right-hand side term, Pm�1 "nm(�)um(�; �), in the �rstequation of (5.24) becomes simply "n(�)un(�; �). In addition, the Lagrange multipliers stillsatisfy the properties (4.58a), (4.58b), and (4.59), that we recall here for the convenience ofthe reader; namely, for all n � 1 and for almost every � in Q?,�0n(�)(= 0; if �n(�) > 0;� 0; if �n(�) = 0;�1n(�)(= 0; if �n(�) < 1,� 0; if �n(�) = 1,and 8><>:�n(�) = 0 =) "n(�) � �;0 < �n(�) < 1 =) "n(�) = �;�n(�) = 1 =) "n(�) � �:Once we have established the existence of a minimizer for the periodic Hartree-Fock model,we are able to compare from above the Hartree-Fock energy per unit volume with this periodicproblem.5.2 Upper limit of the energy per unit volumeIn this section, we prove the following.Proposition 2.1: We assume that the Van Hove sequence � satis�es (2.21). In addition,we assume that the unit cell Q is a cube, and that there exists a minimizer K 2 K of IHFperwhose density � shares the symmetries of the unit cube. Then,lim sup�!1 IHF�j�j � IHFper + M2 ;where IHFper is de�ned by (2.23){(2.24).Remark 5.1 (1) The same result holds true in the smeared nuclei case, if we assume more-over that m shares the symmetries of the cube Q, and de�ne M according to (2.22).(2) In the HF setting, since we do not know whether � is unique, the assertion that � sharesthe symmetries of the cube needs to be assumed.Proof of Proposition 2.1: The beginning of the proof is the same as in the proof ofProposition 4.2 for the RHF problem. Let us denote by K a minimizer of the periodic HFproblem such that the corresponding density � shares the symmetries of the unit cube. Weset @� = fk 2 �; d(k; @�(�)) � 2g;



5. The Hartree-Fock model 64�(@�) = [k2@�k +Q;�� = � n @�;and �( ��) = [k2��k +Q = �(�) n �(@�):We build a cut-o� function �� 2 D(R3) satisfying the following properties: 0 � �� � 1,�� � 1 on �( ��), �� � 0 on �(�)c. In particular, we haveZR3 �2�(x)�(x; x)dx = j�j+ o(j�j) � j�j: (5.26)We next consider the operator K� on L2(R3) whose kernel is��(x; y) = ��(x)�(x; y)��(y):Then, because of (5.26), and since IHF� is also obtained by minimizing EHF� when the traceconstraint is relaxed, that is on the set of self-adjoint operatorsK 0� = f0 � K � 1; Tr K � j�j; Tr�(��� V�)K� < +1g;we have IHF�j�j � 1j�jEHF� (K�):We show exactly as in the proof of Proposition 4.2 thatlim��!1 1j�j �TrL2(R3)[��K�]� ZR3 V��� + 12D(��; ��) + 12U��= ZQ? TrL2�(Q)[���K�] d�(2�)3 � ZQG�+ 12DG(�; �) + M2 :According to the de�nition (2.5) of the Hartree-Fock energy, to reach the conclusion, it remainsnow to compute the exchange term corresponding to K�, and to show thatlim��!1 1j�j ZZR3�R3 j��(x; y)j2jx� yj dxdy = ZQ dxZR3 j�(x; y)j2jx� yj dy:It is easily seen that1j�j ZZ R3�R3 j��(x; y)j2jx� yj dxdy= 1j�j ZZ R3�R3 ��(x)2j�(x; y)j2��(y)2jx� yj dxdy= 1j�j ZZ �(��)��(��) j�(x; y)j2jx� yj dxdy + 2j�j ZZ �(��)��(@�) ��(x)2j�(x; y)j2jx� yj dxdy+ 1j�j ZZ �(@�)��(@�) ��(x)2j�(x; y)j2��(y)2jx� yj dxdy:



5. The Hartree-Fock model 65Let us �rst concentrate on the last two terms and show that they converge to 0 as � goes toin�nity. Indeed, since 0 � �� � 1, the sum of these two terms is a fortiori less or equal tothe following quantity Q� = 2j�j ZZ R3��(@�) j�(x; y)j2jx� yj dxdy;which makes sense since ZQ dxZR3 j�(x; y)j2jx� yj dy < +1:Besides, using the fact that �(x+ k; y + k) = �(x; y), for every k in Z3, we haveQ� = 2j�j Xk2@�ZQ dxZR3 j�(x+ k; y)j2jx+ k � yj dy= 2j�j Xk2@�ZQ dxZR3 j�(x; y � k)j2jx� (y � k)j dy = 2 j@�jj�j ZQ dxZR3 j�(x; y)j2jx� yj dy:We conclude easily, since by de�nition of Van Hove sequences, j@�j = o(j�j), as � goes toin�nity. Therefore, it remains to check that1j�j ZZ�(�)��(�) j�(x; y)j2jx� yj dxdy = ZQ dxZR3 j�(x; y)j2jx� yj dy + o(1);since it is clear that, for the same reasons as above,1j�j ZZ�(�)��(�) j�(x; y)j2jx� yj dxdy = 1j�j ZZ�(��)��(��) j�(x; y)j2jx� yj dxdy + o(1):We rewrite this sum in the following way1j�j ZZ�(�)��(�) j�(x; y)j2jx� yj dxdy = 1j�j Xk; l2�ZZQ�Q j�(x+ k; y + l)j2jx+ k � y � lj dxdy= 1j�j Xk; l2�ZZQ�Q j�(x; y + l � k)j2jx� (y + l � k)j dxdy= 1j�j Xk; l2�ZZQ�R3 �l�k+Q(y) j�(x; y)j2jx� yj dxdy:The conclusion is then easily reached by showing that the sequence of functions de�ned by1j�jPk; l2� �l�k+Q(y) converges to 1 in L1(R3)?-weak, and almost everywhere on R3. Toprove this claim, we could apply directly the technical lemma given in Chapter 2 of [11], but,since the proof is simple, we reproduce the argument here. On the one hand, we clearly have0 � 1j�j Xk; l2��l�k+Q(y) � 1j�jXk2� Xl2Z3 �l�k+Q(y) � 1:



6. Extensions and perspectives 66Therefore, the sequence is bounded in L1(R3). On the other hand, let y be �xed in R3.Then, there exists m 2 Z3 such that y lies in m+Q, and for � large enough m lies in ���,by de�nition of a Van Hove sequence. Hence, for such an y, we obtain1 = 1j�jXk2� Xl2Z3 �l�k+Q(y) = 1j�j#fk; l 2 �; l � k = mg= 1j�j#fk 2 �; k �m 2 �g = 1j�j#[� \ (� +m)]� 1j�j#[� n �jmj+ 12 ] � 1� j�jmj+ 12 jj�j ;where �jmj+ 12 = fk 2 �; d(k; @�(�)) � jmj + 12g, and where the notation #S stands forthe number of elements in the set S. We conclude easily since, by de�nition of a Van Hovesequence, ���jmj+12 ��j�j goes to 0 as � goes to in�nity. }6 Extensions and perspectivesWe list in this last section a few comments on the above results, and indicate some possibleextensions of our work.So far, we have assumed that the periodic lattice that is covered in the limit by thesequence � is Z3, and thus that the periodic cell Q is a cube of unit size. The �rst basicobservation to make is that our whole work goes through mutatis mutandis if we replace thecube of unit size by a cube of size R. Slight modi�cations must be made in the de�nition ofthe potential G in particular, and we refer the reader to [11] for such modi�cations.Replacing the cube by another shape of unit cell is another story. As we have mentionedabove, Theorems 2.1 and 2.3 still hold. On the contrary, our strategy of proof for Theorem 2.2depends upon the shape of the cell. It is an open (but rather technical) question to extendthis result to other shapes of cells.Likewise, we have mentioned above that the assumption (2.21) is a technical assumptionrequired only for the proof of Theorem 2.2. We recall we believe it can be left apart, but wedo not know how.Concerning the periodic problems per se, it would be an interesting question to addressto see whether one can say something on the minimizers. In the HF setting, for instance,we are not able to check, for the time being, whether or not the minimizing periodic densitymatrix K is a projector (which is equivalent to the fact that K� is a (�nite rank) projector,for almost all � in Q?), as it is the case for the Hartree-Fock model for molecules.Apart from these somewhat secondary questions, the main issue to tackle is the proof ofthe thermodynamic limit for the energy per unit volume in the H and HF settings. As far asthis question is concerned, much remains to be done.Even in some simpli�ed framework, trying to understand Hartree-Fock type models forquasicrystals would also be of interest. Our study [11] and references [1, 3, 8, 47] couldconstitute a starting point.Finally, let us mention that the periodic problems we have de�ned in this work can betreated numerically, and we indeed intend to treat them numerically. Numerical experiment
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