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Abstract

We consider the “and” communication device that receives inputs
from two players and outputs the public signal yes if both messages
are yes, and outputs no otherwise. We prove that no correlation can
securely be implemented using this device, even when infinitely many
stages of communication are allowed.
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1 Introduction

Our goal in this paper is to analyze the intrinsic correlation opportunities of-
fered by a given communication device (Forges [3]). It thus relates closely to
the literature on preplay communication, and more precisely to the literature
on mediated talk, initiated by Lehrer [8]. In this strand of literature, a game
is given, and one wishes to implement correlated equilibrium distributions
(c.e.d. thereinafter) of the game as the outcome of communication equilib-
ria, using communication devices of a simple form. In Lehrer and Sorin [9],
it is shown that any c.e.d. (with rational entries) coincides with the distribu-
tion induced by some communication equilibrium, where the communication
device sends public outputs that depend deterministically on the inputs.

It is natural to allow for repeated preplay communication; namely, to
consider situations in which preplay communication proceeds in stages. At
each stage, the players send inputs to the device, that sends back outputs.
In that case, a stronger result is obtained. Given a game, there exists a
communication device with public and deterministic output, that has the
following property: every c.e.d. can be approximated by the outcome of an
equilibrium of the game extended by finitely many stages of preplay commu-
nication. Thus, the same communication device is used for every c.e.d.; only
the length of the preplay communication depends on the particular c.e.d.

The previous devices are game-dependent1. We wish here to avoid this
dependency, and to investigate the existence of universal protocols of com-
munication. Given a communication device, we wish to characterize the set
of distributions µ that can be implemented with it, in the sense that: as soon
as µ is a c.e.d. of a game G, µ is the outcome of an equilibrium of the game
G, extended with infinitely many stages of preplay communication. More-
over, we shall require that the strategies during the communication phase
(the communication protocol) does not depend on G.

More precisely, the question we ask here is essentially the following. Let
D1, D2 be finite (action) sets for two players and let a communication device
be given. We allow infinitely many stages of communication. A protocol
consists in the specification of a profile of communication strategies, and
of rules used to choose an action, as a function of the sequence of signals
received during preplay communication. A protocol induces a distribution µ

1In the first quoted result of Lehrer-Sorin, the device depends only on µ, not on the
game on which µ is a c.e.d.
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over the product set D = D1 ×D2. A protocol securely implements µ if, for
every game G with action sets D1 and D2, the protocol is a Nash equilibrium
of the extended game, as soon as µ is a correlated equilibrium distribution of
G. Gossner [6] establishes a convenient characterization of secure protocols.
In words, a protocol securely implements µ if

(i) no player can manipulate the distribution of decisions
(ii) at the end of the communication phase, player i’s belief on the other

player’s decision coincides with µ(·|di), whatever be the sequence of messages
received by player i : the decision player i is about to take contains all the
information he has about the decision of the other player.

This question was partly addressed in Bárány [1], who assumes that at
least four players communicate using “phone lines” , and in addition that
each player has available a STOP button, that reveals to all players all past
communication. Therefore, his study does not fall into our framework. Under
these assumptions, Bárány shows that any distribution with rational coeffi-
cients can be securely implemented.

We answer our question in the case of a specific communication device,
which we call the and -mechanism. The and -operator in logic is defined over
{0, 1} × {0, 1} as and(x, y) = xy. By analogy, we define the and -mechanism
as a communication mechanism which receive messages x, y from two play-
ers, chosen in {0, 1}, and sends them back the value of and(x, y). We assume
in addition that each player remembers which message he sent or, equiva-
lently, that the signals to 1 and 2 are respectively the pairs (x, and(x, y)) and
(y, and(x, y)). A matrix representation of this mechanism is given below

0 1
0 0 0
1 0 1

The crucial feature of this mechanism is that when player 1 sends x = 0 to
the mechanism, the signal he gets gives him no information about the value
of y (and(0, y) = 0) whereas when he sends x = 1, he is able to deduce the
value of y from his signal (and(1, y) = y).

The main rationale for considering this device is that it is the simplest de-
vice which, when repeated, allows for a complex intertwining of the informa-
tion structures of the two players. Indeed, the two information structures H1

n

and H2
n corresponding to the first n stages of communication are so different

that knowledge operators of different depth differ. It is therefore reasonable
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to hope that the techniques developed here may be of use in dealing with
more general devices.

Our result is essentially negative: we prove that only babbling is secure.
If decisions are not independent of the outcome of the communication phase,
the procedure can be manipulated by one player. Our result can be rephrased
as saying that any non-trivial attempt to use the intertwining of information
structures to generate correlation after infinitely many stages of preplay com-
munication can be manipulated by at least one player. Parts of the proofs
below may be found in [5], [11].

Our result thus stands in sharp contrast with those of Lehrer [7]. Lehrer
studied the and -mechanism in the context of repeated games with imperfect
monitoring. In this context, it is natural to study the case where the whole
procedure (preplay communication and decision stage) is infinitely repeated
over time. Lehrer proves that any distribution with rational coefficients can
be obtained. This involves a statistical monitoring of the behavior of each
player.

This question is also related to issues in computer science. For instance,
in the design of fault-tolerant distributed systems, protocols (i.e., commu-
nication strategies) are sought for that enable interconnected processors to
perform a given task, even if one (or more) is to fail. More than two pro-
cessors are assumed, and the communication mechanism consists of secure
communication lines between each two processors, which allow them to ex-
changes messages without being eavesdropped. We refer to Linial [10] for
references and an extensive discussion of the links between game theory and
computer science.

The paper is organized as follows. Section 1 contains the model and the
statement of the result. Sections 2 and 3 contain the proof. Section 2 deals
with the case where finitely many stages of communication are allowed. Sec-
tion 3 deals with the general case, and is independent of Section 2. Although
the result of Section 2 is included in Section 3, its proof is both much more
simple and intuitive. We thus find it worthy to include it.

2 Concepts and results

We take up the study of the repeated and-mechanism described in the in-
troduction. For emphasis, we label the possible messages of player i ∈ {1, 2}
as N i (for non-informative) and I i (for informative). We set M i = {N i, I i}.
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For simplicity, we label a, b, c, ∗ the different input combinations, as specified
in the next array:

N2 I2

N1 a c
I1 b ∗

The signal function l1 of player 1 is best described by introducing P1 =
{{a, c}, {b}, {∗}}. It is the partition of the set of message pairs induced by the
signaling function of player 1: when the combination of messages sent to the
mechanism is m, player 1 is told which atom of P1 contains m. For simplicity,
we sometimes write P1 = {N1, I1, ∗}. The information partition P2 of player
2 is defined symmetrically. For instance, l1(N1, I2) = {a, c} = N1, while
l2(N1, I2) = {c}.

Repeated communication unfolds as follows: at every stage n ∈ IN , play-
ers send simultaneously messages m1

n,m2
n to the mechanism. Player i is told

li(m1
n, m

2
n).

The set of plays is H∞ = M IN = {a, b, c, ∗}IN . We denote by Hi
n the

information available to player i in stage n, prior to sending a message: it
is the algebra over H∞ generated by cylinder sets of the form hi

n × H∞,
where hi

n ∈ (P i)n−1 is a sequence of n − 1 elements of {N i, I i, ∗}. We also
denote by Hn the algebra generated by histories up to stage n, namely by
cylinder sets of the form hn × H∞, where hn ∈ {a, b, c, ∗}n−1.We denote by
Hi
∞ = σ(Hi

n, n ≥ 1) andH∞ = σ(Hn, n ≥ 1) the σ-algebras over H∞ induced
by these algebras. We shall sometimes use the natural identification of Hn

with the finite set Hn = {a, b, c, ∗}n−1.
The set Si

n of pure (resp. Σi
n of mixed) strategies of communication at

stage n is the set of all maps from (H∞,Hi
n) to M i (resp. ∆(M i)): such a

map specifies which message to send in stage n, as a function of the signals
received so far. A pure (resp. behavioral) strategy of communication of
player i is a sequence σi = (σi

n)n≥1, where σi
n ∈ Si

n (resp. σi
n ∈ Σi

n). Thus
the set of pure strategies of player i is Si = ×n≥1S

i
n, endowed with the

product topology of the discrete ones on each factor. Si is then compact and
metrizable. We denote by S i the Borel σ-algebra on Si. A mixed strategy of
player i is a probability distribution over (Si,S i). Since perfect recall holds,
any mixed strategy is equivalent to a behavioral strategy.

At the end of the communication phase, player i takes a decision from
a finite set Di. A decision rule φi specifies which decision to choose as
a function of the signals; it is a mapping from (H i

∞,Hi
∞) to ∆(Di). A
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protocol consists of a pair of strategies (σ1, σ2) together with a pair of
decision rules φ = (φ1, φ2). Set D = D1 ×D2. Given a protocol (σ, φ), Pσ,φ

stands for the probability distribution induced by σ and φ on (H∞×D,H∞⊗
2D) and µσ,φ and µi

σ,φ are the marginals of Pσ,φ on D and Di respectively.
Similarly, Pσ is the distribution induced by σ on (H∞,H∞). We call µσ,φ the
information structure generated by the protocol (σ, φ).

It is clear how the above specializes when only finitely many stages of
communication are allowed. In the N -stage version, the decision rule φi

N is
Hi

N -measurable.
We use extensively various coordinate mappings, which we represent in

bold type: mi
n, si

n are respectively the message sent and signal received by
player i in stage n, hi

n is the sequence of signals by i up to stage n (such a
sequence is usually identified to an atom of Hi

n), h∞ is the history up to the
decision stage, and di is the decision of player i. Bold type symbols hence
represent random variables.

For simplicity, we sometimes write hi
n for the event {hi

n = hi
n} of Hi

n,
and use similar shortcuts when convenient. Given a strategy σi = (σi

n)n of
player i, σi

n(hi
n) is the mixed move used after the history hi

n; σi
n(hi

n) [mi] is
then the probability of sending the message mi. The support of a measure ν
is denoted by supp ν.

We recall from Gossner [6] the definition of a secure protocol.

Definition 1 A protocol (σ, φ) is secure when for any alternative strategy
τ 1of player 1:

R.1 µ2
(τ1,σ2),φ = µ2

σ,φ;

R.2 h1
∞ is less informative on d2 under P(τ1,σ2),φ than d1 under Pσ,φ,

and symmetric properties hold for player 2.

R.1 means that player 1 can not influence the distribution of d2 by deviating
from σ1.

The notion of less informative in R.2 refers to Blackwell’s [2] notion of
comparison of experiments. The comparison in R.2 is meaningful since the
distributions of d2 under Pσ,φ and P(τ1,σ2),φ are the same. R.2 implies that
player one cannot get more information on d2 by changing σ1, and that d1

is a sufficient statistic for d2 for player 1 under Pσ,φ, i.e.

Pσ,φ(d
2 = ·|d1) = Pσ,φ(d

2 = ·|H1
∞), Pσ,φ-a.s.
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This definition is motivated by the following property (Gossner [6]). Given
a strategic form game G, define the two games Γ1(G) and Γ2(G) as follows:

• in Γ1(G), d ∈ D is drawn according to µ, player i is informed of the
coordinate di, then plays in G;

• in Γ2(G), players communicate through the mechanism, then play in
G.

A protocol is secure if and only if for every G and every Nash equilib-
rium f of Γ1(G), the following is a Nash equilibrium of Γ2(G): communicate
according to σ, take decisions following φ, then play in G according to f .

We call µ ∈ ∆(D) a secure distribution, or secure information structure,
if µ = µσ,φ for some secure protocol (σ, φ).

Our main result is the following.

Theorem 1 The set of secure distributions is ∆(D1)×∆(D2).

Remark 1: let µ = µ1 ⊗ µ2 ∈ ∆(D1) × ∆(D2). It is straightforward to
generate µ as the result of babbling. Define σ = (σ1, σ2) arbitrarily (players
babble), and let player i ignore the communication and choose di according
to µi: φi is the constant map µi. Such (σ, φ) is clearly secure. Therefore,
what our result really entails is that every non-trivial protocol based upon
the and-mechanism can be manipulated. No correlation can be secured, even
when infinitely many stages of preplay communication are allowed.

3 Finitely many stages

3.1 Reduction to minimal information structures

An information structure µ ∈ ∆(D) is called minimal when:

• For any d1
0, d

1
1 ∈ supp µ1, the conditional probabilities µ(·|d1

0) and
µ(·|d1

1) on D2 differ.

• A symmetric condition holds for player 2.
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This amounts to assuming that the statistic di must be minimal for
player i.

For instance, the only minimal information structures in ∆(D1)×∆(D2)
are the unit masses.

Remark 2: By Proposition 9.3 in [6], it is enough to prove that minimal
secure information structures are unit masses. In the following, we focus on
minimal information structures.

Remark 3: Let (σ, φ) be a secure protocol which generates µ. Then, Pσ,φ-
a.s., for every di ∈ supp φi(hi

∞), Pσ,φ(d
3−i = ·|di) = Pσ,φ(d

3−i = ·|hi
∞).

Therefore, since µ is minimal, φi(hi
∞) is a Dirac mass, Pσ,φ-a.s. In other

words, φi is ”pure” on the support of Pσ.

3.2 Proof for finitely many stages

We assume here that N stages of communication are allowed.
Let (σ, φ) be a secure protocol, and µ = µσ,φ. We identify µ to a D1×D2-

matrix, whose (d1, d2)-entry is µ(d1, d2). As noted in the previous section, we
may assume that, Pσ-a.s., φi(hi

∞) puts probability one on some decision. It
is crucial to note that we cannot assume this to hold outside of the support
of Pσ.

The proof is divided in two steps. First, we introduce a most informative
deviation of player i, and argue that up to some permutation of lines and
columns, µ is diagonal: at the end of the communication phase, each player
knows Pσ,φ-a.s. the decision of the other. Second, we introduce a least
informative deviation of player i, and prove that µ is concentrated on one
decision pair.

Step 1: a most informative strategy We shall define a strategy of
player 1 that enables him to know at the end of the communication phase
which decision player 2 is about to take. Clearly, the way to get the most
information is to use the strategy σ̃1 defined as: play I1 in every stage,
irrespective of past signals. This falls short of proving anything since the
supports of P(σ̃1,σ2),φ and Pσ,φ may be disjoint: hence, knowing which signals
player 2 did receive may not enable player 1 to deduce which decision player 2
is about to take (since the decision rule might be random outside the support
of Pσ,φ).
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Hence we amend the above definition of σ̃1 as: play I1 whenever player
2 finds it plausible that player 1 does play I1, i.e., when, conditional upon
player 2’s past signals, there is a positive Pσ,φ-probability that player 1 sends
the message I1. Of course, this is not well-defined since the message sent by
player 1 is then a function of the information held by player 2. Therefore,
our first task is to show that this construction is essentially meaningful: we
show inductively that if player 1 abides by this strategy up to stage n, player
1 will know at stage n the belief held by player 2 on player 1’s message at
stage n.

Definition 2 Let P be a probability distribution, X be a random variable
defined over (H∞,H∞), and n ∈ IN . We say that player 1 knows X under
P at stage n if there exists an H1

n-measurable version of X under P .

Thus, player 1 knows X under P if there exists a H1
n-measurable variable

Y such that P (X = Y ) = 1.
It is convenient to introduce the set C1

n(h2
n) of sequences of signals (to

player 1) which are consistent with the fact that player 2 receives h2
n:

C1
n(h2

n) = {h1
n, h1

n ∩ h2
n 6= ∅}

where the intersection h1
n ∩ h2

n is taken as of elements of H∞: h1
n ∈ C1

n(h2
n)

if, for some sequence hn, the signals received along hn by the two players are
respectively h1

n and h2
n. C2

n(h1
n) is defined similarly.

Let p2
n = Pσ,φ[·|H2

n] be the posterior belief on H1
n given H2

n. Notice that
p2

1 is a constant (H2
1 is trivial), hence known to player 1 at stage 1.

We construct σ1
+ inductively. Assume that σ1

+,m has been defined for
m < n, and that player 1 knows p2

n at stage n under Pσ1
+,σ2 (this depends

only upon the definition of (σ1
+, σ2) in the first n− 1 stages). Denote by p̃2

n

an H1
n-measurable version of p2

n. We set
{

σ1
+,n(h1

n) = I1 if p̃2
n(h1

n){m1
n = I1} > 0

σ1
+,n(h1

n) = N1 otherwise

In the first case, player 1 knows that player 2 asserts a strictly positive
probability on I1 being played in stage n. In the second case, player 1 knows
that player 2 does not expect I1 to be played.

Lemma 1 Player 1 knows p2
n+1 at stage n + 1 under Pσ1

+,σ2
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Proof: consider any sequence of signals h1
n+1 ∈ H1

n+1 that belongs to the
support of Pσ1

+,σ2 . We need to prove that p2
n+1 is constant over C2

n+1(h
1
n+1)∩

suppPσ1
+,σ2 . Write h1

n+1 as (h1
n, s1

n) where h1
n contains the signals to player

1 up to stage n. Let h2
n+1 = (h2

n, s2
n) ∈ C1

n+1(h
1
n+1) ∩ supp Pσ1

+,σ2 . We
distinguish three cases.

In the first case we assume that player 1 knows that player 2 expects N1

to be played:

Case 1: s1
n = N1. Then:

p2
n(h2

n){m1
n = N1} = 1,

and the belief p2
n+1(h

2
n+1) of player 2 at stage n + 1 is given by

p2
n+1(h

2
n+1)[h̃

1
n, s̃1

n] =

{
p2

n(h2
n)[h̃1

n] if s̃1
n = N1

0 otherwise

In words, after any history h̃1
n consistent with h2

n, player 1 is supposed to

play N1, hence the probability assigned by player 2 to the sequence (h̃1
n, N

1)

coincides with the probability assigned to h̃1
n.

In the last two cases, m1
n = I1, hence player 1 gets to know s2

n. Since he
knew the belief p2

n of player 2, he can compute the belief held in stage n + 1.
Case 2: s1

n = I1.
In that case, s2

n = N2 and the belief of player 2 at stage n + 1 is given by

p2
n+1(h

2
n+1)[h̃

1
n, s̃

1
n] =





p2
n(h2

n)[h̃1
n]× σ1(h̃1

n)[I1] for s̃1
n = I1

p2
n(h2

n)[h̃1
n]× σ1(h̃1

n)[N1] for s̃1
n = N1

0 for s̃1
n = ∗

Case 3: s1
n = ∗.

In that case, s2
n = ∗, and Bayes’ rule yields

p2
n+1(h

2
n+1)[h̃

1
n, s̃1

n] =

{
p2

n(h2
n)[h̃1

n]×σ1(h̃1
n)[I1]∑

ĥ1
n

p2
n(h2

n)[ĥ1
n]×σ1(ĥ1

n)[I1]
for s̃1

n = ∗
0 otherwise

In each case, the belief of player 2 in stage n + 1 is known to player 1.
Therefore, under (σ1

+, σ2, φ), player 1 knows at stage N the belief held by
player 2 over H1

N , hence the belief over d1. Using the minimality assumption,
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this implies that, Pσ1
+,σ2,φ-a.s., player 2 knows d2 at stage N . By secureness,

h1
N is less informative on d2 under Pσ1

+,σ2,φ than d1 on d2 under Pσ,φ. Thus,

for every d1 ∈ supp µ1, d2 ∈ D2, µ(d2|d1) is either equal to 0 or 1. Using
once again the minimality assumption, µ is a diagonal matrix (up to some
permutation of lines and columns and after deletion of lines and columns
containing only 0’s). This ends the proof of Lemma 1. ♣

Step 2: a least informative strategy Clearly, the strategy of player
1 that provides him with the least information about signals received by
player 2 is to send repeatedly the message N1. As above, this has to be
amended, since it might be the case that player 2 knows at some stage that
player 1 should play I1 according to σ1. We define σ1

− as: play N1 when-
ever N1 is played with positive probability according to σ1, σ1

−(h1
n) = N1 if

σ1(h1
n)[N1] > 0, and σ1

−(h1
n) = I1 otherwise. It is clear that Pσ1

−,σ2 ¿ Pσ

(absolutely continuous). We set S =supp Pσ1
−,σ2 . We prove in Lemma 2 that

d1 is constant on S. Since S ⊆supp Pσ and µ is diagonal, d2 is also constant
on S. Since the distributions of d2 under Pσ1

−,σ2 and Pσ are the same, this
implies that µ is concentrated on a single decision pair d ∈ D. This concludes
the proof of the theorem in the finitely repeated case.

We first briefly give the intuition behind Lemma 2. If the decision of
player 1 were to depend upon the signals received in the stages in which he
plays I1, there would be a sequence h1

n such that (h1
n, I

1) and (h1
n, ∗) belong

to S, and the distributions of d1 conditional on these sequences differ. One
then can define a strategy of player 2 which enables him to know at stage
n whether player 1 did receive h1

n or not. By playing either N2 or I2 in
that case, and properly mimicking σ2 afterwards, player 2 would be able
to influence the distribution of d1. This would contradict the secureness of
(σ, φ).

Lemma 2 d1 is constant on S.

Proof: we prove inductively that the conditional distribution Pσ[d1 = ·|H1
n]

is constant, Pσ1
−,σ2-a.s. In words, under (σ1

−, σ2), the belief over d1 held by
player 1 at stage n is independent of the particular sequence of signals that
is obtained at stage n. We emphasize that the belief is computed under the
original profile σ.
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There is nothing to prove for n = 1 since H1
1 is trivial; we assume this is

true for some n. We shall prove that, Pσ1
−,σ2-a.s.

Pσ

(
d1 = ·|H1

n+1

)
= Pσ

(
d1 = ·|H1

n

)
, (1)

Fix h1
n = (s̄1

1, . . . , s̄
1
n−1) ∈ H1

n with Pσ1
−,σ2(h1

n) > 0. If there is only one

sequence h1
n+1 which has positive probability under (σ1, σ2) given h1

n, then
(1) holds trivially. Therefore, we need to discuss the case where σ1

−(h1
n) = I1

and Pσ1
−,σ2 [m2

n = I2|h1
n] ∈]0, 1[. In that case h1

n+1 may either be (h1
n, I

1) or

(h1
n, ∗). We need to prove that

Pσ

(
d1 = ·|(h1

n, I
1)

)
= Pσ

(
d1 = ·|(h1

n, ∗)) . (2)

We define a strategy σ2
+ that enables player 2 to assess whether or not player

1 receives the sequence h1
n in the first n − 1 stages. Define σ2

+ for the first
n − 1 stages as: play N2 in stage p ≤ n − 1 if s̄1

p = I1, and I2 otherwise.
Define h2

n = (s̄2
1, . . . , s̄

2
n−1) by

s̄2
p =





N2 if s̄1
p = I1

I2 if s̄1
p = N1

∗ if s̄1
p = ∗

By construction of S, Pσ1,σ2
+
(h2

n) > 0 and Pσ1,σ2
+
(h1

n|h2
n) = 1. Indeed, since

Pσ1
−,σ2(h1

n) > 0, all the stages for which s̄1
p = I1(and thus, all the stages for

which s̄2
p = N2) are stages in which σ1 prescribes to play I1.

Given σ2
+, we define two strategies σ̃2

+ and σ2
+ which differ only after h2

n.

• σ̃2
+ is defined as:

1. follow σ2
+ up to stage n and continue with σ2 if h2

n 6= h2
n;

2. if h2
n = h2

n, play N2 in stage n, select a fictitious past h̃2
n+1 according

to Pσ[· |(h1
n, I1)] and continue with σ2 as if the sequence of signals

received in the first n stages had been h̃2
n+1.

• σ2
+ is defined as:

1. same as 1 for σ̃2
+;
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2. if h2
n = h2

n, play I2 in stage n, select a fictitious past h̃2
n+1 according to

Pσ[·|(h1
n, ∗)] and continue with σ2, as if the sequence of signals received

in the first n stages had been h̃2
n+1.

By secureness, for every d1 ∈ D1,

Pσ1,σ̃2
+
(d1 = d1) = Pσ1,σ2

+
(d1 = d1),

therefore
Pσ1,σ̃2

+
(d1 = d1|h2

n) = Pσ1,σ2
+
(d1 = d1|h2

n). (3)

By construction,

Pσ1,σ̃2
+

(
d1 = d1|h2

n

)
= Pσ

(
d1 = d1|(h1

n, I
1)

)

and
Pσ1,σ2

+

(
d1 = d1|h2

n

)
= Pσ

(
d1 = d1|h1

n, ∗) .

Thus, (2) follows from (3), which ends the proof of the induction step.
Finally, remark that Pσ1

−,σ2 (d1 = ·|H1
N) = 1d1=·, Pσ1

−,σ2-a.s., since d1 has

a H1
N -measurable version under Pσ. (Recall that φ1 is deterministic on supp

Pσ. It is therefore enough to modify in an appropriate way the definition
of d1 outside supp Pσ to get such a version.) Since Pσ1

−,σ2 ¿ Pσ, any such
version is also a version under Pσ1

−,σ2 . The result follows. ♣

4 Infinitely many stages

4.1 Secure protocols generating minimal information
structures

We start with some preliminary results on secure protocols.

Proposition 1 Let (σ, φ) be a secure protocol generating the minimal infor-
mation structure µ, and σ1 = pσ1

0 + (1− p)σ1
1 with 0 < p ≤ 1.

Then, for n ∈ N and d ∈ D, one has, P(σ1
0,σ2),φ-a.s.:

P(σ1
0,σ2),φ(d =d|H1

n) = Pσ,φ(d =d|H1
n). (4)

13



In this statement, σ1 is interpreted as a mixed strategy, and σ1 = pσ1
0 +

(1−p)σ1
1 is an equality between probability distributions (elements of ∆(S1)).

The proposition holds for any general communication mechanism, as long as
players remember their past messages (perfect recall). Loosely speaking, it
asserts that, for any pure strategy in the support of σ1, the induced distri-
bution on decisions is the same.

For simplicity of notations let P = Pσ,φ and P ′ = P(σ1
0,σ2),φ, so that

P ′ ¿ P . We start with a few preliminary results. We then prove Proposition
1 at the end of the section.

Lemma 3 For hn ∈ Hn, P ′(hn| H1
n) = P (hn| H1

n) P ′ almost surely.

Shortly, P ′(·|H1
n) = P (·|H1

n), P ′-a.s.: at stage n, the beliefs of player 1
on the actual play are the same under P and P ′.

Proof: This proof relies on perfect recall but does not require the secureness
of (σ, φ). Let hi

n = hi
n(hn) be the sequence of signals received by player i

along hn, and (mi
1, . . . , m

i
n−1) the messages sent by player i along hi

n. It
is enough to prove P ′(hn|h1

n) = P (hn|h1
n). Set S(hi

n) =
∏

σi
t(h

i
t)[m

i
t] and

S ′(h1
n) =

∏
σ1

0,t(h
1
t )[m

1
t ] where hi

t is the truncation of hi
n at stage t. Note

that P (hn) = S(h1
n)S(h2

n). Denote by C(h1
n) the sequences in H2

n which are
consistent with h1

n (see Section 3.2 for related definitions). For any h′n ∈
C(h1

n), h
′2
n and S(h

′2
n ) are defined as above. By Bayes’ rule:

P ′(hn|h1
n) =

S ′(h1
n)S(h2

n)∑
h′n∈C(h1

n) S ′(h1
n)S(h′2n )

=
S(h2

n)∑
h′n∈C(h1

n) S(h′2n )
= P (hn|h1

n)

♣

Lemma 4 For d2 ∈ D2, P (d2 = d2|H1
∞) = P ′(d2 = d2|H1

∞) P ′ almost
surely.

Proof: let hm ∈ Hm be fixed. For n ≥ m, hm may be viewed as a subset
of Hn (the subset of all histories in Hn that begin with hm). By applying
Lemma 3 to each history in this subset, one obtains

P (hm|H1
n) = P ′(hm|H1

n) P ′-a.s.

14



The right side is a (P ′, (Hn)n) martingale converging to P ′(hm|H1
∞) P ′-

a.s.. The left side is a (P, (Hn)n) martingale converging to P (hm|H1
∞) P -

a.s.. Since P ′ ¿ P , it also converges to P (hm|H1
∞), P ′-a.s.. Therefore,

P (hm|H1
∞) = P ′(hm|H1

∞) P ′-a.s..
Since H∞ is generated by the countable family of events {hm = hm},

P (A|H1
∞) = P ′(A|H1

∞), P ′ -a.s. for any A ∈ H∞. (5)

Let X be a H∞–measurable version of d2 under P (see the beginning of
Section 3.2). Hence {X = d2} ∈ H∞ and

P (X = d2|H1
∞) = P (d2 = d2|H1

∞), P -a.s., hence also P ′-a.s.. (6)

Using (5), this completes the proof. ♣

Lemma 5 Under P ′, d1 is a sufficient statistic for d2 for player 1.

Proof: It is enough to prove that P ′(d2|H1
∞) = P ′(d2|d1) P ′ a.s., for any

d2 ∈ D2. Fix d1 such that P ′(d1) > 0 :

P ′(d2|d1) =
1

P ′(d1)

∫

φ1(h1∞)=d1

P ′(d2|h1
∞)dP ′(h1

∞)

=
1

P ′(d1)

∫

φ1(h1∞)=d1

P (d2|h1
∞)dP ′(h1

∞)

=
1

P ′(d1)

∫

φ1(h1∞)=d1

P (d2|d1)dP ′(h1
∞)

= P (d2|d1).

The initial equality expresses Bayes’s rule, the second equality is derived from
Lemma 4, and the third one uses that, by secureness, P (d2|h1

∞) = P (d2|d1)
P -a.s., hence also P ′-a.s. since P ′ ¿ P .

Thus, P ′(d2|d1) = P (d2|d1), P ′-a.s.. The result follows by secureness
(R.2) and Lemma 4. ♣

Lemma 6 Under P ′, d1 is a minimal sufficient statistic for d2 for player 1.

Proof: Let d1, d
′1 ∈ supp P ′, and assume that P ′(d2|d1) = P ′(d2|d′1) for all

d2 ∈ D2. Since P ′ ¿ P , d1, d
′1 ∈ supp P . Now P (d2|d1) = P ′(d2|d1) (see the
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previous proof), and similarly P (d2|d′1) = P ′(d2|d1). Since d1 is a minimal
sufficient statistic for d2 for player 1 under P , d1 = d

′1. ♣
Proof of Proposition 1:

For each d2 ∈ D2, consider the random variables ρ(d2) = P (d2|d1) =
P (d2|H1

∞), ρ′(d2) = P ′(d2|d1) = P ′(d2|H1
∞) and ρ′′(d2) = P(σ1

1,σ2),φ(d
2|d1).

Set ρ = (ρ(d2))d2∈D2 , ρ′ = (ρ′(d2))d2∈D2 and ρ′′ = (ρ′′(d2))d2∈D2 : ρ, ρ′and
ρ′′ are the standard experiments (see Blackwell [2]) characterizing the infor-
mation of h1

∞ on d2 under P , P ′ and P(σ1
1,σ2),φ respectively. For any convex

function g on ∆(D2), h1
∞ being less informative on d2 under P ′ than under

P implies that
∫

gdρ ≥ ∫
gdρ′ and similarly

∫
gdρ ≥ ∫

gdρ′′. On the other
hand, P = p.P ′+(1− p).P(σ1

1,σ2),φ implies
∫

gdρ ≤p.
∫

gdρ′+(1− p).
∫

gdρ
′′
.

Therefore
∫

gdρ =
∫

gdρ′ for every g, which implies that ρ and ρ′ have the
same distribution under P and P ′. For d1 ∈ D1, define now r(d1) and r′(d1)
in ∆(D2) by r(d1)[d2] = P (d2|d1) and r′(d1)[d2] = P ′(d2|d1). One has:

P ′(d1) = P ′(ρ′ = r′(d1)) = P (ρ = r(d1)) = P (d1),

where the first and third equalities use minimality properties. Hence the
marginals of P and P ′ on D1 are equal. Since furthermore P (d2|d1) =
P ′(d2|d1), the marginals of P and P ′ on D = D1 ×D2 are also equal. This
proves the first claim.

To prove the second claim, fix n ∈ N and h1
n ∈ H1

n. Let τ 1
0 be the strategy

defined as: play according to σ1 until stage n, then follow σ1
0 after histories

compatible with h1
n and σ1 after other histories. Let τ 1

1 be the strategy defined
similarly by replacing σ1

0 by σ1
1. It is easily seen that σ1 = p · τ 1

0 +(1− p) · τ 1
1.

Hence by the first claim µ(τ1
1,σ2),φ(d) = µ(d) for every d ∈ D. This rewrites

Pσ(h1
n)× P(σ1

0,σ2),φ[d|h1
n] + (1− Pσ(h1

n))× P(σ1
0,σ2),φ[d|H1

n − {h1
n}]

= Pσ(h1
n)× Pσ,φ[d|h1

n] + (1− Pσ(h1
n))× Pσ,φ[d|H1

n − {h1
n}]

Hence P(σ1
0,σ2),φ[d|h1

n] = Pσ,φ[d|h1
n] whenever Pσ(h1

n) > 0. This completes the
second claim. ♣

4.2 Proof for infinitely many stages

4.2.1 Organization of the proof

We fix a secure protocol (σ, φ) generating a minimal information structure.
Let d1 ∈ D1 be fixed throughout this section. For hn ∈ Hn, σ, φ and hn
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induce a probability P hn
σ,φ over (H∞ ∩ hn) × D, we write π1

n = P hn
σ,φ(d

1).

π1
n is thus a function from {a, b, c, ∗}n−1 to [0, 1] and for hn ∈ supp Pσ,

π1
n = Pσ,φ(d

1|hn). We shall prove:

Proposition 2 For every n, π1
n is constant Pσ,φ almost surely.

Before to proceed with the proof, we first show how to derive Theorem 1
from Proposition 2: The sequence (π1

n)n is an (Hn)-martingale, that con-
verges Pσ,φ-a.s. to Pσ,φ [d1 = d1|H1

∞]. By Remark 3, the limit coincides with
1d1=d1 , Pσ,φ-a.s. By Proposition 2, π1

n is a.s. constant, hence so is 1d1=d1 .
Thus, either d1 = d1, Pσ,φ-a.s., or d1 6= d1, Pσ,φ-a.s. The support of µ1 is
thus a singleton, and the same argument applies for µ2.♣

Let us describe the organization of the proof.
By Proposition 1, one has

P.1 Eτ1,σ2 [π1
n] = Eσ1,σ2 [π1

n], as soon as the mixed strategy σ1 puts a posi-
tive probability on τ 1.

For any strategy f2 of player 2, consider the strategy τ 2 that coincides
with f 2 up to stage n, and to σ2 from stage n + 1. Then, P(σ1,τ2),φ(d

1 =
d1) = Eσ1,f2 [π1

n]. From R.1, one deduces:

P.2 For each f 2, Eσ1,f2 [π1
n] = Eσ1,σ2 [π1

n].

Let u2 = (u2
p)p be any fully mixed strategy of player 2 (i.e. the distribution

u2
p(h

2
p) has full support, for each h2

p ∈ H2
p). We prove in the next section that:

P.3 For Pσ1,u2-almost every sequence hn ∈ {a, b, c, ∗}n−1, one has π1
n(hn) =

π1
n(h̃n), where h̃n ∈ {a, b, c, ∗}n−1 is the sequence obtained from hn by

replacing each occurrence of c in the sequence by an a.

We shall prove that any function pn : {a, b, c, ∗}n−1 → [0, 1] that satisfies
P.1, P.2 and P.3 is Pσ-a.s. constant. Observe that the three properties
involve only the definition of σ = (σ1, σ2) in the first n − 1 stages of com-
munication. Therefore we may focus on these stages. We call strategy up to
stage n the specification σi of a strategy for the first n− 1 stages of commu-
nication, that is of a sequence (σi

p)p=1,...,n, where σi
p : (H∞,Hi

p) → ∆(M i).
Observe that there are finitely many pure strategies up to stage n.
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For a pair of strategies σ up to stage n, define the set of histories consistent
with σ for player 1 as: C1

σ = {hn, Pσ(h1
n(hn)) > 0}.

Given that P.1, P.2 and P.3 hold, Proposition 2 is a consequence of
Proposition 3 below.

Proposition 3 Let (σ1, σ2) be strategies up to stage n. Let pn be a function
{a, b, c, ∗}n−1 to [0, 1]. Assume that A.1, A.2 and A.3 below hold:

A.1 For every f 1 ∈ supp σ1,

Ef1,σ2 [pn] = Eσ1,σ2 [pn] .

A.2 For every strategy f 2 up to stage n,

Eσ1,f2 [pn] = Eσ1,σ2 [pn] .

A.3 For Pσ1,u2-almost every sequence hn ∈ {a, b, c, ∗}n−1, one has pn(hn) =

pn(h̃n), where h̃n ∈ {a, b, c, ∗}n−1 is the sequence obtained from hn by
replacing each occurrence of c in the sequence by an a.

Then pn is constant on C1
σ.

We prove in Section 4.2.2 that P.3 holds. Next, we prove Proposition 3
in Section 4.2.3.

4.2.2 Informative deviations: c’s become a’s

The title of this section is best understood with the statement of Lemma 7.
We sketch informally the argument used in this section. Assume that player
2, upon receiving the signal I2 in stage 1 (i.e., if the combination of messages
is c) continues as if he had received N2. In that case, the distribution of
d1 is what it would have been, had the combination of messages been a.
Since the distribution of d1 is invariant under deviations of player 2, one has
π1

1(c) = π1
1(a).

We extend the argument and show that if the signals to player 1 along
two sequences hn and h̃n are the same, π1

n(hn) = π1
n(h̃n). This is the content

of Lemma 7 below.
We follow standard notations and write XcY ∈ {a, b, c, ∗}n to denote

the sequence obtained by concatenation of the sequence X, then c, then the
sequence Y (where X and Y may be empty).
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Recall that hi
n(hn) is the sequence of signals to player i along hn (it is the

value of the random variable hi
n on the set hn).

Let u2 be a completely mixed strategy of player 2. For every n and
X0aX1a · · · aXk ∈ {a, b, c, ∗}n−1,

Pσ1,u2(X0aX1a · · · aXk) > 0 ⇔ Pσ1,u2(X0cX1c · · · cXk) > 0, (7)

since h1
n(X0aX1a · · · aXk) = h1

n(X0cX1c · · · cXk).

Lemma 7 For any history XcY ∈ {a, b, c, ∗}n−1 such that Pσ1,u2(XcY ) > 0:

π1
n(XaY ) = π1

n(XcY ) (8)

Proof: We prove the result by induction over the number of b’s in XcY . The
proofs of the initial and induction steps are the same. Assume (8) holds for
sequences containing less than k b’s and let XcY be a sequence with exactly
k b’s. Write X = X0aX1 · · · aXl, and Y = Y0aY1 · · · aYm, where the Xp’s
and Yq’s contain no a’s. For p ∈ {0, . . . , l}, q ∈ {0, . . . ,m}, we let x2

p and y2
q

denote the sequences of signals to player 2 along Xp and Yq respectively.
Thus,

h2
n(XaY ) = x2

0N
2x2

1 · · ·N2x2
l N

2y2
0N

2 · · · y2
m,

and

h2
n(X0cX1 · · · cXlcY0cY1 · · · cYm) = x2

0I
2x2

1 · · · I2x2
l I

2y2
0I

2 · · · y2
m.

We denote by h2
n the former, and by h̃2

n the latter.
For any sequence hn = X̃0cX̃1 · · · cX̃lcỸ0cỸ1 · · · cỸm such that h2

n(hn) =
h̃2

n, we denote by r(hn) the sequence X̃0aX̃1 · · · aX̃laỸ0aỸ1 · · · aỸm.
Since the distribution of d1 must remain unaffected if player 2 plays after

h̃2
n as if he had received h2

n, one has

∑

h2
n(hn)=h̃2

n

Pσ2,u2(hn)π1
n(hn) =

∑

h2
n(hn)=h̃2

n

Pσ2,u2(hn)π1
n(r(hn))

or equivalently

∑

h2
n(hn)=h̃2

n

Pσ2,u2(hn)[π1
n(hn)− π1

n(r(hn))] = 0 (9)

19



For any such sequence hn, either hn contains strictly less than k b’s,
or hn = XcY . In the first case, π1

n(hn) = π1
n(r(hn)) by the induction

assumption.
Therefore, (9) implies

Pσ1,u2(XcY )[π1
n(XcY )− π1

n(XaY )] = 0.

♣

4.2.3 Proof of Proposition 3

The proof goes by induction over n. We shall drop the qualifier “up to stage
n”. For n = 1, there is nothing to prove. We assume that the result has been
established for n, and consider a pair of strategies (up to stage n+1) (σ1, σ2)
and pn+1 that satisfy the assumptions of the proposition.

Given si ∈ {I i, N i, ∗}, we denote by σi(·|si) the continuation strategy of
σi given si. Formally, σi

p(h
i
p|si) = σi

p((s
i, hi

p)) for hi
p ∈ H i

p.
For si ∈ {I i, N i, ∗}, we also denote by σ3−i(·|si) the belief held by player

3− i on the continuation strategy of player i after stage 1. Thus,
{

σi(·|I3−i) = σi(·|N i)
σi(·|N3−i) = Pσ(mi

1 = N i)× σi(·|N i) + Pσ(mi
1 = N i)× σi(·|I i)

The notation σi(·|∗) is not ambiguous since σi(·|s1 = ∗) = σi(·|s2 = ∗).
We prove that pn+1(hn+1) is constant over C1

σ ∩{s1
1 = ∗}, over C1

σ ∩{s1
1 =

N1}, and over C1
σ ∩ {s1

1 = I1} in Steps 1, 2, and 3 respectively. We then
conclude by showing that those constants are equal in Step 4.

Step 0:
Observe that pn+1(chn) = pn+1(ahn) whenever chn ∈ supp Pσ1,u2 .

Step 1: pn+1(hn+1) is constant over C1
σ ∩ {s1

1 = ∗}
Define pn(·|∗) : {a, b, c, ∗}n−1 → [0, 1] by pn(hn|∗) = pn+1(∗hn).

Lemma 8 If, Pσ(s1 = (∗, ∗)) > 0. then σ1(·|∗), σ2(·|∗) and pn(·|∗) satisfy
A.1, A.2 and A.3.

Proof: We start with A.3. Let XcY ∈ supp Pσ1(·|∗),u2 be a sequence of length
n−1. Then pn(XcY |∗) = pn+1(∗XcY ) = pn+1(∗XaY ) since Pσ1,u2(∗XcY ) >
0. Therefore, pn(XcY |∗) = pn(XaY |∗).
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We turn to A.2. Let f 2,f̄ 2, and f̃ 2, be strategies up to stage n. Define
strategies τ 2 and τ̄ 2 up to stage n + 1 by:

• play I2 in stage 1;

• switch to f 2 (resp. f̄ 2) if s2
1 = ∗; to f̃ 2 otherwise.

More explicitly τ 2(∗·) = f 2(·), τ 2(I2·) = f̃ 2(·) and a similar definition
holds for τ̄ 2. Applying A.2 to τ 2 and to τ̄ 2 yields:

Eσ1,τ2 [pn+1] = Eσ1,τ̄2 [pn+1] .

This implies, since τ 2 and τ̄ 2 coincide after I1,

Eσ1(·|∗),f2 [pn(·|∗)] = Eσ1(·|∗),f̄2 [pn(·|∗)] .

A symmetric proof shows that A.1 holds (except that f 1, f̃ 1 should be taken
in supp σ2(·|∗)).♣

Corollary 1 pn+1(hn+1) is constant over C1
σ ∩ {s1

1 = ∗}.

Proof: If Pσ(s1 = (∗, ∗)) = 0 there is nothing to prove. Otherwise, the
induction hypothesis applied to σ1(.|∗), σ2(.|∗), and pn(.|∗) shows that pn+1

is constant over {∗hn, hn ∈ C1
σ1(.|∗),σ2(.|∗)}. But then, C1

σ ∩ {s1
1 = ∗} = {∗hn,

hn ∈ C1
σ1(.|∗),σ2(.|∗)}.♣

Let p∗ be this value.

Step 2: pn+1(hn+1) is constant over C1
σ ∩ {s1

1 = N1}
Define pn(·|N1) : {a, b, c, ∗}n−1 → [0, 1] as

pn(hn|N1) = Pσ(m2
1 = N2)× pn+1(ahn) + Pσ(m2

1 = I2)× pn+1(chn)
= pn+1(chn) by Step 0.

Lemma 9 If Pσ(s1
1 = N1) > 0, then σ1(·|N1), σ2(·|N1) and pn(·|N1) satisfy

A.1, A.2 and A.3.

Proof: The proof of A.3 follows from the one in Lemma 8. We now prove
A.2. Given strategies f 2, f̄ 2 and f̃ 2 up to stage n, define τ 2 and τ̄ 2 as:

• play I2 in stage 1;
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• switch to f 2(resp. f̄ 2) if s2
1 = I2; switch to f̃ 2 otherwise.

A.2 applied to τ 2 and τ̄ 2 yields

Eσ1,τ2 [pn+1] = Eσ1,τ̄2 [pn+1] ,

and hence
Eσ1(·|N1),f2 [pn+1(c, ·)] = Eσ1(·|N1),f̄2 [pn+1(c, ·)] . (10)

From Step 0,

Eσ1(·|N1),f2 [pn+1(a, ·)] = Eσ1(·|N1),f̄2 [pn+1(a, ·)] . (11)

By a linear combination of (10) and (11),

Eσ1(·|N1),f2

[
pn(·|N1)

]
= Eσ1(·|N1),f̄2

[
pn(·|N1)

]
.

It remains to prove A.1. Given f 1 ∈ supp σ1(·|N1), define τ 1 by :

• play N1 in stage 1;

• switch to f 1 from stage 2 on.

Since τ 1 belong to supp σ1, one has

Eτ1,σ2 [pn+1] = Eσ1,σ2 [pn+1] (12)

The left-hand side is also equal to

Pσ(m2
1 = N2)Ef1,σ2(·|N2) [pn+1(a, ·)] + Pσ(m2

1 = I2)Ef1,σ2(·|I2) [pn+1(c, ·)] .
By Step 0, this is also equal to

Pσ(m2
1 = N2)Ef1,σ2(·|N2) [pn+1(c, ·)] + Pσ(m2

1 = I2)Ef1,σ2(·|I2) [pn+1(c, ·)]
= Ef1,σ2(·|N1) [pn+1(c, ·)]
= Ef1,σ2(·|N1)

[
pn(·|N1)

]
.

Hence Ef1,σ2(·|N1) [pn(·|N1)] does not depend on f 1 ∈ supp σ1(·|N1).♣
Corollary 2 pn+1(hn+1) is constant over C1

σ ∩ {s1
1 = N1}.

Proof: The case Pσ(s1 = N1) = 0 is trivial. Otherwise, applying the
induction hypothesis to σ1(·|N1), σ2(·|N1) and pn(·|N1) shows that pn+1 is
constant on {chn, hn ∈ C1

σ1(·|N1),σ2(·|N1)}. By Step 0 it also takes the same

value on {ahn, hn ∈ C1
σ1(·|N1),σ2(·|N1)}. Finally, C1

σ ∩ {s1
1 = N1} = {ahn, hn ∈

C1
σ1(·|N1),σ2(·|N1)} ∪ {chn, hn ∈ C1

σ1(·|N1),σ2(·|N1)}.♣
Call pa this value.
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Step 3: pn+1(hn+1) is constant over C1
σ ∩ {s1

1 = I1}
Define pn(·|I2) : {a, b, c, ∗}n−1 → [0, 1] by

pn(hn|I2) = pn+1(bhn).

Lemma 10 If Pσ(s1 = (I1, N2)) > 0, then σ1(·|I1), σ2(·|N2) and pn(·|I2)
satisfy A.1, A.2 and A.3.

Proof: The proof of A.3 is a straightforward adaptation of the one in
Lemma 8. We now prove A.1. Given f 1, f̄ 1 ∈ supp σ1(·|I1) and f̃ 1 ∈ supp
σ1(·|∗), define τ 1 and τ̄ 1 as:

• play I1 in stage 1;

• switch to f 1(resp. f̄ 1) if s1
1 = I1; switch to f̃ 1 otherwise.

Then,
Eτ1,σ2 [pn+1] = Eτ̄1,σ2 [pn+1]

implies
Ef1,σ2(·|N2) [pn+1(b·)] = Ef̄1,σ2(·|N2) [pn+1(b·)] . (13)

which is A.1.
We finally prove A.2. Given a strategy f 2 up to stage n, define τ 2 by :

• play N2 in stage 1;

• switch to f 2 from stage 2 on.

By A.2, one has

Eσ1,τ2 [pn+1] = Eσ1,σ2 [pn+1] . (14)

The left-hand side is also equal to

Pσ(m1
1 = N1)Eσ1(·|N1),f2 [pn+1(a·)] + Pσ(m1

1 = I1)Eσ1(·|I1),f2 [pn+1(b·)] .
By Step 2, this is also equal to

Eσ1,τ2 [pn+1] = Pσ(m1
1 = N1)pa + Pσ(m1

1 = I1)Eσ1(·|I1),f2 [pn+1(b·)]
Hence, Eσ1(·|I1),f2 [pn+1(b·)] does not depend on f 2; A.2 follows.♣
Corollary 3 pn+1(hn+1) is constant over C1

σ ∩ {s1
1 = I1}

Proof: Assume Pσ(s1 = (I1, N2)) > 0, apply the induction hypothesis and
remark that C1

σ ∩ {s1
1 = N1} = {bhn, hn ∈ C1

σ1(·|I1),σ2(·|N2)}.♣
We denote by pb this value.
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Step 4: pn+1(hn+1) is constant over C1
σ

Assume first that σ1 sends N1 with probability one in the first stage. In
that case, C1

σ = C1
σ ∩ {s1

1 = N1} and pn+1 is constant and equal to pa.
Now assume that σ1sends I1 with positive probability in the first stage.

Let τ 2 and τ̄ 2 be the strategies that send respectively N2 and I2 in the first
stage, and coincide with σ2 afterwards. One has

Eσ1,τ2 [pn+1] = Pσ(m1
1 = N1)× pa + Pσ(m1

1 = I1)× pb

and
Eσ1,τ̄2 [pn+1] = Pσ(m1

1 = N1)× pa + Pσ(m1
1 = I1)× p∗.

Since Eσ1,τ2 [pn+1] = Eσ1,τ̄2 [pn+1], one gets pb = p∗.
If σ1 sends I1 with probability one in the first stage, C1

σ = C1
σ ∩ {s1

1 =
I1} ∪ C1

σ ∩ {s1
1 = ∗} so that pn+1 is constant and equal to p∗ on this set.

Finally, in the case where σ1 sends both messages N1 and I1 with positive
probability in the first stage. Let τ 1 and τ̄ 1 be the strategies that send
respectively N1 and I1 in the first stage, and coincide with σ1 afterwards.
One has

Eτ1,σ2 [pn+1] = pa

and
Eτ̄1,σ2 [pn+1] = p∗.

Since Eτ1,σ2 [pn+1] = Eτ̄1,σ2 [pn+1], one gets pa = p∗.♣
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