Boolean games revisited

Elise Bonzon Marie-Christine Lagasquie-Schiex Jérôme Lang
Bruno Zanuttini

{bonzon,lagasq,lang}@irit.fr
zanutti@info.unicaen.fr
1. Introduction

2. Boolean games

3. Nash equilibria

4. Dominated strategies

5. Conclusion
1 Introduction

2 Boolean games

3 Nash equilibria

4 Dominated strategies

5 Conclusion
- 2-players games with p binary decision variables
- Each decision variable is controlled by only one player
- Zero-sum games
- Static games

- 2-players games with p binary decision variables
- Each decision variable is controlled by only one player
 - Zero-sum games
 - Static games
Introduction

- 2-players games with p binary decision variables
- Each decision variable is controlled by only one player
- Zero-sum games
- Static games

- 2-players games with p binary decision variables
- Each decision variable is controlled by only one player
- Zero-sum games
- Static games
Example: Boolean n-players version of prisoners’ dilemma

- n prisoners (denoted by 1, . . . , n).
- The same proposal is made to each of them:
 “Either you cover your accomplices (C_i, $i = 1, . . . , n$) or you denounce them ($\neg C_i$, $i = 1, . . . , n$).”
 - Denouncing makes you freed while your partners will be sent to prison (except those who denounced you as well; these ones will be freed as well),
 - But if none of you chooses to denounce, everyone will be freed.
Boolean \(n \)-players version of prisoners’ dilemma

- Normal form for \(n = 3 \):

\[
\begin{array}{ccc}
 & C_3 & \bar{C}_3 \\
1 & (1, 1, 1) & (0, 1, 0) \\
C_1 & (1, 0, 0) & (1, 1, 0) \\
C_2 & (0, 1, 1) & (0, 1, 1) \\
\bar{C}_1 & (1, 0, 1) & (1, 1, 1) \\
\bar{C}_2 & & \\
\end{array}
\]

- \(n \) prisoners: \(n \)-dimension matrix, therefore \(2^n \) \(n \)-tuples must be specified.
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

```
<table>
<thead>
<tr>
<th></th>
<th>$C_3$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_1$</td>
<td>(1, 1, 1)</td>
<td>(0, 1, 0)</td>
</tr>
<tr>
<td>$\overline{C}_1$</td>
<td>(1, 0, 0)</td>
<td>(1, 1, 0)</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th></th>
<th>$\overline{C}_3$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_1$</td>
<td>(0, 0, 1)</td>
<td>(0, 1, 1)</td>
</tr>
<tr>
<td>$\overline{C}_1$</td>
<td>(1, 0, 1)</td>
<td>(1, 1, 1)</td>
</tr>
</tbody>
</table>
```

- n prisoners: n-dimension matrix, therefore 2^n n-tuples must be specified.
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>$3 : C_3$</th>
<th></th>
<th>$3 : \overline{C}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>C_1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>C_2 (1, 1, 1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>\overline{C}_2 (0, 1, 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Expressed much more compactly by Boolean game $G = (A, V, \pi, \Phi)$:

 - $A = \{1, \ldots, n\}$,
 - $V = \{C_1, \ldots, C_n\}$,
 - $\forall i \in \{1, \ldots, n\}$, $\pi_i = \{C_i\}$, and
 - $\phi = (\bigwedge_i C_i \vee \neg C_i)$.
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>$3 : C_3$</th>
<th></th>
<th>$3 : \overline{C}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>C_2</td>
</tr>
<tr>
<td>C_1</td>
<td>(1, 1, 1)</td>
<td>(0, 1, 0)</td>
<td></td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 0)</td>
<td>(1, 1, 0)</td>
<td></td>
</tr>
</tbody>
</table>

Expressed much more compactly by Boolean game $G = (A, V, \pi, \Phi)$:

- $A = \{1, \ldots, n\}$,
- $V = \{C_1, \ldots, C_n\}$,
- $\forall i \in \{1, \ldots, n\}, \pi_i = \{C_i\}$, and
- $\phi_i = (C_1 \land C_2 \land \ldots C_n) \lor \lnot C_i$.
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>$3 : C_3$</th>
<th></th>
<th>$3 : \overline{C}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_1</td>
<td>$(1, 1, 1)$</td>
<td>C_1</td>
<td>$(0, 0, 1)$</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>$(1, 0, 0)$</td>
<td>\overline{C}_1</td>
<td>$(1, 0, 1)$</td>
</tr>
</tbody>
</table>

- Expressed much more compactly by Boolean game $G = (A, V, \pi, \Phi)$:
 - $A = \{1, \ldots, n\}$,
 - $V = \{C_1, \ldots, C_n\}$,
 - $\forall i \in \{1, \ldots, n\}, \pi_i = \{C_i\}$, and
 - $\varphi_i = (C_1 \land C_2 \land \ldots C_n) \lor \neg C_i$.
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>C_3</th>
<th>\overline{C}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_2</td>
<td>\overline{C}_2</td>
</tr>
<tr>
<td>C_1</td>
<td>(1, 1, 1)</td>
<td>(0, 1, 0)</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 0)</td>
<td>(1, 1, 0)</td>
</tr>
</tbody>
</table>

- Expressed much more compactly by Boolean game $G = (A, V, \pi, \Phi)$:
 - $A = \{1, \ldots, n\}$,
 - $V = \{C_1, \ldots, C_n\}$,
 - $\forall i \in \{1, \ldots, n\}, \pi_i = \{C_i\}$, and
 - $\varphi_i = (C_1 \land C_2 \land \ldots C_n) \lor \neg C_i$.
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>C_3</th>
<th>\overline{C}_2</th>
<th>C_2</th>
<th>\overline{C}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>(1, 1, 1)</td>
<td>(0, 1, 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 0)</td>
<td>(1, 1, 0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Expressed much more compactly by Boolean game $G = (A, V, \pi, \Phi)$:

- $A = \{1, \ldots, n\}$,
- $V = \{C_1, \ldots, C_n\}$,
- $\forall i \in \{1, \ldots, n\}, \pi_i = \{C_i\}$, and
- $\varphi_i = (C_1 \land C_2 \land \ldots \land C_n) \lor \neg C_i$.
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>$3 : C_3$</th>
<th>$3 : \overline{C}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_2</td>
<td>\overline{C}_2</td>
</tr>
<tr>
<td></td>
<td>$(1, 1, 1)$</td>
<td>$(0, 1, 0)$</td>
</tr>
<tr>
<td>C_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>$(1, 0, 0)$</td>
<td>$(1, 1, 0)$</td>
</tr>
<tr>
<td>2</td>
<td>C_2</td>
<td>\overline{C}_2</td>
</tr>
<tr>
<td></td>
<td>$(0, 1, 0)$</td>
<td>$(0, 1, 1)$</td>
</tr>
<tr>
<td>C_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>$(1, 0, 1)$</td>
<td>$(1, 1, 1)$</td>
</tr>
</tbody>
</table>

- Expressed much more compactly by Boolean game $G = (A, V, \pi, \Phi)$:
 - $A = \{1, \ldots, n\}$,
 - $V = \{C_1, \ldots, C_n\}$,
 - $\forall i \in \{1, \ldots, n\}, \pi_i = \{C_i\}$, and
 - $\varphi_i = (C_1 \land C_2 \land \ldots C_n) \lor \lnot C_i$.
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

$$\begin{array}{ccc}
\begin{array}{c}
3 : C_3 \\
\hline
1 & 2 & C_2 & \overline{C_2} \\
\hline
C_1 & (1, 1, 1) & (0, 1, 0) \\
\overline{C_1} & (1, 0, 0) & (1, 1, 0)
\end{array}
\end{array}$$

$$\begin{array}{ccc}
\begin{array}{c}
3 : \overline{C_3} \\
\hline
1 & 2 & C_2 & \overline{C_2} \\
\hline
C_1 & (0, 0, 1) & (0, 1, 1) \\
\overline{C_1} & (1, 0, 1) & (1, 1, 1)
\end{array}
\end{array}$$

- $\forall i$, i has 2 possible strategies: $s_{i_1} = \{C_i\}$ and $s_{i_2} = \{\overline{C_i}\}$
- the strategy $\overline{C_i}$ is a winning strategy for i.
- 8 strategy profiles for G
Boolean \(n\)-players version of prisoners’ dilemma

- Normal form for \(n = 3\):

\[
\begin{array}{c|c|c}
3 : C_3 & 1 & 2 \\
\hline
C_1 & (1, 1, 1) & (0, 1, 0) \\
\overline{C}_1 & (1, 0, 0) & (1, 1, 0) \\
\end{array}
\quad
\begin{array}{c|c|c}
3 : \overline{C}_3 & 1 & 2 \\
\hline
C_1 & (0, 0, 1) & (0, 1, 1) \\
\overline{C}_1 & (1, 0, 1) & (1, 1, 1) \\
\end{array}
\]

- \(\forall i, \ i\) has 2 possible strategies: \(s_{i_1} = \{C_i\}\) and \(s_{i_2} = \{\overline{C}_i\}\)
- the strategy \(\overline{C}_i\) is a winning strategy for \(i\).
- 8 strategy profiles for \(G\)
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th align="right">$3 : C_3$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td align="right">2</td>
<td></td>
</tr>
<tr>
<td>C_1</td>
<td align="right">(1, 1, 1)</td>
<td>(0, 1, 0)</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td align="right">(1, 0, 0)</td>
<td>(1, 1, 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$3 : \overline{C}_3$</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C_1</td>
<td>(0, 0, 1)</td>
<td>(0, 1, 1)</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 1)</td>
<td>(1, 1, 1)</td>
</tr>
</tbody>
</table>

- $\forall i$, i has 2 possible strategies: $s_{i_1} = \{C_i\}$ and $s_{i_2} = \{\overline{C}_i\}$
- the strategy \overline{C}_i is a winning strategy for i.
- 8 strategy profiles for G
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>$3 : C_3$</th>
<th>$3 : \overline{C}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C_1</td>
<td>(1, 1, 1)</td>
<td>C_1</td>
</tr>
<tr>
<td></td>
<td>(0, 1, 0)</td>
<td>(0, 0, 1)</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 0)</td>
<td>\overline{C}_1</td>
</tr>
<tr>
<td></td>
<td>(1, 1, 0)</td>
<td>(1, 1, 1)</td>
</tr>
</tbody>
</table>

- $\forall i$, i has 2 possible strategies: $s_{i_1} = \{C_i\}$ and $s_{i_2} = \{\overline{C}_i\}$
- the strategy \overline{C}_i is a winning strategy for i.
- 8 strategy profiles for G
1 Introduction

2 Boolean games

3 Nash equilibria

4 Dominated strategies

5 Conclusion
Normal form for $n = 3$:

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
 & $3 : C_3$ & \\
\hline
1 & C_2 & \overline{C}_2 \\
\hline
C_1 & $(1, 1, 1)$ & $(0, 1, 0)$ \\
\overline{C}_1 & $(1, 0, 0)$ & $(1, 1, 0)$ \\
\hline
\end{tabular}
\end{center}

\begin{center}
\begin{tabular}{|c|c|c|}
\hline
 & $3 : \overline{C}_3$ & \\
\hline
1 & C_2 & \overline{C}_2 \\
\hline
C_1 & $(0, 0, 1)$ & $(0, 1, 1)$ \\
\overline{C}_1 & $(1, 0, 1)$ & $(1, 1, 1)$ \\
\hline
\end{tabular}
\end{center}

- s_- denotes the projection of S on $A \setminus \{i\}$
- $S = \{C_1 C_2 C_3\}$. $s_1 = (C_2, C_3)$; $s_2 = (C_1, C_3)$; $s_3 = (C_1, C_2)$
Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>C_3</th>
<th>\overline{C}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>(1, 1, 1)</td>
<td>(0, 1, 0)</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 0)</td>
<td>(1, 1, 0)</td>
</tr>
</tbody>
</table>

s_- denotes the projection of S on $A \setminus \{i\}$

$S = \{C_1 C_2 C_3\}$. $s_1 = (C_2, C_3)$; $s_2 = (C_1, C_3)$; $s_3 = (C_1, C_2)$
Boolean n-players version of prisoners’ dilemma

- **Normal form for $n = 3$:**

<table>
<thead>
<tr>
<th></th>
<th>3 : C_3</th>
<th></th>
<th>3 : \overline{C}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>C_2</td>
<td></td>
<td>C_2</td>
</tr>
<tr>
<td></td>
<td>$(1, 1, 1)$</td>
<td></td>
<td>$(0, 1, 0)$</td>
</tr>
<tr>
<td>C_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$(1, 0, 0)$</td>
<td></td>
<td>$(1, 1, 0)$</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- s_{-i} denotes the projection of S on $A \setminus \{i\}$
- $S = \{C_1 C_2 C_3\}$. $s_{-1} = (C_2, C_3)$; $s_{-2} = (C_1, C_3)$; $s_{-3} = (C_1, C_2)$
Boolean n-players version of prisoners’ dilemma

- **Normal form for $n = 3$:**

<table>
<thead>
<tr>
<th></th>
<th>3 : C_3</th>
<th>3 : \overline{C}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_2</td>
<td>\overline{C}_2</td>
</tr>
<tr>
<td>C_1</td>
<td>(1, 1, 1)</td>
<td>(0, 1, 0)</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 0)</td>
<td>(1, 1, 0)</td>
</tr>
<tr>
<td>2</td>
<td>C_2</td>
<td>\overline{C}_2</td>
</tr>
<tr>
<td>C_1</td>
<td>(0, 0, 1)</td>
<td>(0, 1, 1)</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 1)</td>
<td>(1, 1, 1)</td>
</tr>
</tbody>
</table>

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player’s strategy is an optimal response to other players’ strategies. $S = \{s_1, \ldots, s_n\}$ is a PNE iff $\forall i \in \{1, \ldots, n\}, \forall s'_i \in 2^{\pi_i}, u_i(S) \geq u_i(s_{-i}, s'_i)$.

- 2 pure-strategy Nash equilibria: $C_1 C_2 C_3$ and $\overline{C}_1 \overline{C}_2 C_3$.

E. Bonzon, M.C. Lagasquie-Schiex, J. Lang, B. Zanuttini
Boolean n-players version of prisoners’ dilemma

- **Normal form for** $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>3 : C_3</th>
<th></th>
<th>3 : \overline{C}_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>C_2</td>
<td>\overline{C}_2</td>
</tr>
<tr>
<td>C_1</td>
<td>$(1, 1, 1)$</td>
<td>$(0, 1, 0)$</td>
<td>C_1</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>$(1, 0, 0)$</td>
<td>$(1, 1, 0)$</td>
<td>\overline{C}_1</td>
</tr>
</tbody>
</table>

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player’s strategy is an optimal response to other players’ strategies. $S = \{s_1, \ldots, s_n\}$ is a PNE iff $
\forall i \in \{1, \ldots, n\}, \forall s'_i \in 2^{\pi_i}, u_i(S) \geq u_i(s_{-i}, s'_i)$.

2 pure-strategy Nash equilibria: $C_1 C_2 C_3$ and $\overline{C}_1 \overline{C}_2 \overline{C}_3$
Boolean \(n \)-players version of prisoners’ dilemma

- Normal form for \(n = 3 \):

<table>
<thead>
<tr>
<th></th>
<th>(3 : C_3)</th>
<th></th>
<th>(3 : \overline{C}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(C_2)</td>
<td>2</td>
<td>(C_2)</td>
</tr>
<tr>
<td>(C_1)</td>
<td>(1, 1, 1)</td>
<td>(\overline{C}_1)</td>
<td>(1, 0, 0)</td>
</tr>
<tr>
<td>(\overline{C}_1)</td>
<td>(1, 0, 0)</td>
<td>(\overline{C}_1)</td>
<td>(1, 1, 0)</td>
</tr>
</tbody>
</table>

- A pure-strategy Nash equilibrium (PNE) is a strategy profile such as each player’s strategy is an optimal response to other players’ strategies. \(S = \{s_1, \ldots, s_n\} \) is a PNE iff
\[
\forall i \in \{1, \ldots, n\}, \forall s_i' \in 2^{\pi_i}, u_i(S) \geq u_i(s_{-i}, s_i').
\]

- 2 pure-strategy Nash equilibria: \(C_1 C_2 C_3 \) and \(\overline{C}_1 \overline{C}_2 \overline{C}_3 \)
Characterization

A strategy profile S is a pure-strategy Nash equilibrium for a Boolean-game G iff for all i, either

- $S \models \varphi_i$
- or $s_{-i} \models \neg \varphi_i$

Example: $G = (A, V, \pi, \phi)$ with $A = \{1, 2\}$, $V = \{a, b\}$, $\pi_1 = \{a\}$, $\pi_2 = \{b\}$, $\varphi_1 = a \land \neg b$, $\varphi_2 = \neg a \land b$.

G has 2 PNE:

- $S = ab$. We have $S \models \varphi_1$ and $(s_{-2} = a) \models \neg \varphi_2$.
- $S = \overline{a}b$. We have $(s_{-1} = b) \models \neg \varphi_1$ and $S \models \varphi_2$.
Characterization

- $\exists i : \varphi_i =$ projection of φ_i on variables of π_{-i}.
- $\exists i : \varphi_i$: obtained by forgetting in φ_i all variables controlled by i.
- Example: $G = (A, V, \pi, \phi)$ with $A = \{1, 2\}$, $V = \{a, b\}$, $\pi_1 = \{a\}$, $\pi_2 = \{b\}$, $\varphi_1 = a \land \neg b$, $\varphi_2 = \neg a \land b$.
 - $\exists 1 : \varphi_1 = (T \land \neg b) \lor (F \land \neg b) = \neg b$
 - $\exists 2 : \varphi_2 = (\neg a \land T) \lor (\neg a \land F) = \neg a$
Characterization

- \(\exists i : \varphi_i = \) projection of \(\varphi_i \) on variables of \(\pi_{-i} \).

- \(\exists i : \varphi_i : \) obtained by forgetting in \(\varphi_i \) all variables controlled by \(i \).

- Example: \(G = (A, V, \pi, \phi) \) with \(A = \{1, 2\} \), \(V = \{a, b\} \), \(\pi_1 = \{a\} \), \(\pi_2 = \{b\} \), \(\varphi_1 = a \land \neg b \), \(\varphi_2 = \neg a \land b \).
 - \(\exists 1 : \varphi_1 = (\top \land \neg b) \lor (\bot \land \neg b) = \neg b \)
 - \(\exists 2 : \varphi_2 = (\neg a \land \top) \lor (\neg a \land \bot) = \neg a \).
Characterization

- $\exists i : \varphi_i =$ projection of φ_i on variables of π_{-i}.
- $\exists i : \varphi_i$: obtained by forgetting in φ_i all variables controlled by i.
- Example: $G = (A, V, \pi, \phi)$ with $A = \{1, 2\}$, $V = \{a, b\}$, $\pi_1 = \{a\}$, $\pi_2 = \{b\}$, $\varphi_1 = a \land \neg b$, $\varphi_2 = \neg a \land b$.
 - $\exists 1 : \varphi_1 = (\top \land \neg b) \lor (\bot \land \neg b) = \neg b$
 - $\exists 2 : \varphi_2 = (\neg a \land \top) \lor (\neg a \land \bot) = \neg a$
Characterization

- $\exists i : \varphi_i = \text{projection of } \varphi_i \text{ on variables of } \pi_{-i}$.
- $\exists i : \varphi_i$: obtained by forgetting in φ_i all variables controlled by i.
- Example: $G = (A, V, \pi, \phi)$ with $A = \{1, 2\}$, $V = \{a, b\}$, $\pi_1 = \{a\}$, $\pi_2 = \{b\}$, $\varphi_1 = a \land \neg b$, $\varphi_2 = \neg a \land b$.
 - $\exists 1 : \varphi_1 = (\top \land \neg b) \lor (\bot \land \neg b) = \neg b$
 - $\exists 2 : \varphi_2 = (\neg a \land \top) \lor (\neg a \land \bot) = \neg a$
Characterization

- \(\exists i : \varphi_i = \) projection of \(\varphi_i \) on variables of \(\pi_{-i} \).
- \(\exists i : \varphi_i : \) obtained by forgetting in \(\varphi_i \) all variables controlled by \(i \).
- Example: \(G = (A, V, \pi, \phi) \) with \(A = \{1, 2\}, V = \{a, b\}, \pi_1 = \{a\}, \pi_2 = \{b\}, \varphi_1 = a \land \neg b, \varphi_2 = \neg a \land b. \)
 - \(\exists 1 : \varphi_1 = (\top \land \neg b) \lor (\bot \land \neg b) = \neg b \)
 - \(\exists 2 : \varphi_2 = (\neg a \land \top) \lor (\neg a \land \bot) = \neg a \)
Characterization

Simplification of the characterization

S is a pure-strategy Nash equilibrium for G if and only if

$$S \models \bigwedge_{i} (\varphi_i \lor \neg \exists i : \varphi_i)$$

Example: $G = (A, V, \pi, \phi)$ with $A = \{1, 2\}$, $V = \{a, b\}$, $\pi_1 = \{a\}$, $\pi_2 = \{b\}$, $\varphi_1 = a \land \neg b$, $\varphi_2 = \neg a \land b$.

Recall that: $\exists 1 : \varphi_1 = \neg b$ and $\exists 2 : \varphi_2 = \neg a$.

G has 2 PNE:

- $S = a\bar{b}$. We have $S \models \varphi_1 \land (\neg \exists 2 : \varphi_2)$.
- $S = \bar{a}b$. We have $S \models (\neg \exists 1 : \varphi_1) \land \varphi_2$.
Complexity

Nash equilibrium

Deciding whether there is a pure-strategy Nash equilibrium in a Boolean game is Σ^P_2-complete. Completeness holds even under the restriction to two-players zero-sum games.

Goals in DNF

Let G be a Boolean game. If every φ_i is in DNF, then deciding whether there is a pure-strategy Nash equilibrium is NP-complete.

Completeness holds even if both we restrict the number of players to 2 and one player controls only one variable.
1 Introduction

2 Boolean games

3 Nash equilibria

4 Dominated strategies

5 Conclusion
Boolean n-players version of prisoners’ dilemma

- **Normal form for $n = 3$:**

<table>
<thead>
<tr>
<th></th>
<th>C_3</th>
<th>C_2</th>
<th>\overline{C}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>(1, 1, 1)</td>
<td>(0, 1, 0)</td>
<td></td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 0)</td>
<td>(1, 1, 0)</td>
<td></td>
</tr>
</tbody>
</table>

- **Normal form for $n = 3$:**

<table>
<thead>
<tr>
<th></th>
<th>\overline{C}_3</th>
<th>C_2</th>
<th>\overline{C}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>(0, 0, 1)</td>
<td>(0, 1, 1)</td>
<td></td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 1)</td>
<td>(1, 1, 1)</td>
<td></td>
</tr>
</tbody>
</table>

- A strategy s_i for player i **strictly dominates** another strategy s'_i if it does strictly better than it against all possible combinations of other players’ strategies: $\forall s_{-i} \in 2^{\pi-i}, u_i(s'_i, s_{-i}) < u_i(s_i, s_{-i})$.

- s_i **weakly dominates** s'_i if it does at least as well against all possible combinations of other players’ strategies, and strictly better against at least one: $\forall s_{-i} \in 2^{\pi-i}, u_i(s'_i, s_{-i}) \leq u_i(s_i, s_{-i})$ and $\exists s_{-i} \in 2^{\pi-i}$ s.t. $u_i(s'_i, s_{-i}) < u_i(s_i, s_{-i})$.

- Elimination of dominated strategies: $\overline{C}_1 \overline{C}_2 \overline{C}_3$
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>$3 : C_3$</th>
<th></th>
<th>$3 : \overline{C}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_1</td>
<td>(1, 1, 1)</td>
<td></td>
<td>(0, 1, 0)</td>
</tr>
<tr>
<td>\overline{C}_1</td>
<td>(1, 0, 0)</td>
<td></td>
<td>(1, 1, 0)</td>
</tr>
</tbody>
</table>

- A strategy s_i for player i **strictly dominates** another strategy s_i' if it does strictly better than it against all possible combinations of other players’ strategies: $\forall s_{-i} \in 2^{\pi-i}, u_i(s_i', s_{-i}) < u_i(s_i, s_{-i})$.

- s_i **weakly dominates** s_i' if it does at least as well against all possible combinations of other players’ strategies, and strictly better against at least one: $\forall s_{-i} \in 2^{\pi-i}, u_i(s_i', s_{-i}) \leq u_i(s_i, s_{-i})$ and $\exists s_{-i} \in 2^{\pi-i}$ s.t. $u_i(s_i', s_{-i}) < u_i(s_i, s_{-i})$.

- Elimination of dominated strategies: $\overline{C}_1 \overline{C}_2 \overline{C}_3$
Boolean n-players version of prisoners’ dilemma

- Normal form for $n = 3$:

<table>
<thead>
<tr>
<th></th>
<th>3 : C_3</th>
<th></th>
<th>3 : $\overline{C_3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_2</td>
<td>1</td>
<td>C_2</td>
</tr>
<tr>
<td></td>
<td>$(1, 1, 1)$</td>
<td></td>
<td>$(0, 1, 0)$</td>
</tr>
<tr>
<td></td>
<td>$\overline{C_1}$</td>
<td></td>
<td>$(1, 1, 0)$</td>
</tr>
<tr>
<td></td>
<td>$(1, 0, 0)$</td>
<td></td>
<td>$(1, 0, 1)$</td>
</tr>
</tbody>
</table>

- A strategy s_i for player i strictly dominates another strategy s'_i if it does strictly better than it against all possible combinations of other players’ strategies: $\forall s_{-i} \in 2^{\pi-i}, u_i(s'_i, s_{-i}) < u_i(s_i, s_{-i})$.

- s_i weakly dominates s'_i if it does at least as well against all possible combinations of other players’ strategies, and strictly better against at least one: $\forall s_{-i} \in 2^{\pi-i}, u_i(s'_i, s_{-i}) \leq u_i(s_i, s_{-i})$ and $\exists s_{-i} \in 2^{\pi-i}$ s.t. $u_i(s'_i, s_{-i}) < u_i(s_i, s_{-i})$.

- Elimination of dominated strategies: $\overline{C_1 \overline{C_2 \overline{C_3}}}$
Boolean \(n \)-players version of prisoners’ dilemma

- Normal form for \(n = 3 \):

<table>
<thead>
<tr>
<th></th>
<th>3 : (C_3)</th>
<th></th>
<th>3 : (\overline{C}_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2)</td>
<td>(C_2)</td>
<td>(\overline{C}_2)</td>
</tr>
<tr>
<td>(C_1)</td>
<td>((1, 1, 1))</td>
<td>((0, 1, 0))</td>
<td>((0, 0, 1))</td>
</tr>
<tr>
<td>(\overline{C}_1)</td>
<td>((1, 0, 0))</td>
<td>((1, 1, 0))</td>
<td>((1, 0, 1))</td>
</tr>
</tbody>
</table>

- A strategy \(s_i \) for player \(i \) **strictly dominates** another strategy \(s'_i \) if it does strictly better than it against all possible combinations of other players’ strategies: \(\forall s_{-i} \in 2^{\pi_{-i}}, \ u_i(s'_i, s_{-i}) < u_i(s_i, s_{-i}). \)

- \(s_i \) **weakly dominates** \(s'_i \) if it does at least as well against all possible combinations of other players’ strategies, and strictly better against at least one: \(\forall s_{-i} \in 2^{\pi_{-i}}, \ u_i(s'_i, s_{-i}) \leq u_i(s_i, s_{-i}) \) and \(\exists s_{-i} \in 2^{\pi_{-i}} \) s.t. \(u_i(s'_i, s_{-i}) < u_i(s_i, s_{-i}). \)

- Elimination of dominated strategies: \(\overline{C}_1 \overline{C}_2 \overline{C}_3 \)
Characterization

Strict dominance

Strategy s_i **strictly dominates** strategy s'_i if and only if:

- $s_i \models (\neg \exists -i : \neg \varphi_i)$ and
- $s'_i \models (\neg \exists -i : \varphi_i)$.

Example: $G = (A, V, \pi, \phi)$ with $A = \{1, 2\}$, $V = \{a, b\}$, $\pi_1 = \{a\}$, $\pi_2 = \{b\}$, $\varphi_1 = a$, $\varphi_2 = \neg a \land b$. Strategy $s_1 = a$ strictly dominates $s'_1 = \overline{a}$. We compute: $\exists -1 : \varphi_1 = a$ and $\exists -1 : \neg \varphi_1 = \neg a$, and we have:

- $s_1 \models \neg (\neg a)$.
- $s'_1 \models \neg a$.
Characterization

Weak dominance

Strategy s_i weakly dominates strategy s'_i if and only if:

- $(\varphi_i)_{s'_i} \models (\varphi_i)_{s_i}$ and
- $(\varphi_i)_{s_i} \not\models (\varphi_i)_{s'_i}$.

Example: $G = (A, V, \pi, \phi)$ with $A = \{1, 2\}$, $V = \{a, b\}$, $\pi_1 = \{a\}$, $\pi_2 = \{b\}$, $\varphi_1 = a$, $\varphi_2 = \neg a \land b$.

Strategy $s_2 = b$ strictly dominates $s'_2 = \overline{b}$. We compute: $(\varphi_2)_{s'_2} = \bot$, $(\varphi_2)_{s_2} = \neg a$, and we have:

- $\bot \models \neg a$
- $\neg a \not\models \bot$
Complexity

Nash equilibrium

Deciding whether a given strategy s'_i is weakly dominated is Σ^p_2-complete.

Hardness holds even if φ_i is restricted to be in DNF.
1 Introduction

2 Boolean games

3 Nash equilibria

4 Dominated strategies

5 Conclusion
Extension of Harrenstein and al.'s Boolean games:

- Arbitrary number of players;
- Non zero-sum games;
- Characterization of Nash equilibria and dominated strategies;
- Computational complexity of the related problems;
The companion paper (PRICAI’06) considers extended Boolean games with ordinal preferences represented by prioritized goals and CP-nets with binary variables;

Computing *mixed strategy Nash equilibria* for Boolean games;

Defining and studying *dynamic* Boolean games (with complete or incomplete information).