A note on the hardness results for the labeled perfect matching problems in bipartite graphs

Jérôme Monnot*

September 28, 2007

Abstract

In this note, we strengthen the inapproximation bound of $O(\log n)$ for the labeled perfect matching problem established in J. Monnot, The Labeled perfect matching in bipartite graphs, Information Processing Letters 96 (2005) 81-88, using a self improving operation in some hard instances. It is interesting to note that this self improving operation does not work for all instances. Moreover, based on this approach we deduce that the problem does not admit constant approximation algorithms for connected planar cubic bipartite graphs.

Keywords: labeled matching; bipartite graphs; approximation and complexity; inapproximation bounds.

1 Introduction

A matching M on a graph $G = (V, E)$ is a subset of edges that are pairwise non adjacent; M is said perfect if it covers the vertex set V of G. In the labeled perfect matching problem (Labeled Min PM in short), we are given a simple graph $G = (V, E)$ on $|V| = 2n$ vertices which contains a perfect matching together with a color (or label) function $L : E \rightarrow \{c_0, \ldots, c_q\}$ on the edge set of G. For $i = 0, \ldots, q$, we denote by $L_i \subseteq E$ the set of edges of color c_i. The goal of Labeled Min PM is to find a perfect matching on G that uses a minimum number of colors. Alternatively, if $G[L'] = (V, E')$ where $E' = \{e \in E : L(e) \in L'\}$ denotes the subgraph induced by the edges of colors $L' \subseteq \{c_0, \ldots, c_q\}$, then Labeled Min PM aims at finding a subset L' of minimum size such that $G[L']$ contains a perfect matching. In [9] a generalization, called perfect matching under categorization, has been studied. In this framework, each edge e has also a non-negative weight $w(e)$, and the colors are called categories (thus, $q + 1$ indicates the number of categories). The goal is to find a perfect matching M of E minimizing $\sum_{i=0}^{q} \max_{e \in L_i \cap M} w(e)$. In [9], it is shown that, on the one hand, the problem is polynomial when the number of categories (i.e., colors) is fixed, and on the other hand, the problem is NP-hard when the weights take values 0 or 1 and the graph is a collection of disjoint 4-cycles. Note that the case $w(e) = 1, \forall e \in E$ corresponds to Labeled Min PM. Very recently, some approximation results are obtained for Labeled Min PM when the graphs are bipartite 2-regular or complete bipartite $K_{n,n}$, [7]. In particular, it is shown that the 2-regular bipartite case is

*CNRS LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, F-75775 Paris Cedex 16, France. E-mail: monnot@lamsade.dauphine.fr
equivalent to the minimum satisfiability problem, and that a greedy algorithm picking at each iteration a monocolored matching of maximum size provides a $\frac{1+H_r}{2}$-approximation in complete bipartite graphs where r is the maximum of times that a color appears in the graph and H_r is the r-th harmonic number. Moreover, it is proved that \textsc{Labeled Min PM} is not $O(\log n)$-approximable in bipartite complete graphs. In [6], this problem is motivated by some applications in timetable problems. Several related works concerning some matching problems on colored graphs can be found in [3, 4, 5].

In this note, we prove first that \textsc{Labeled Min PM} is not in \textsc{APX} whenever the bipartite graphs have a maximum degree of 3. Hence, there is a gap of approximability between graphs of maximum degree 2 and 3 since we can easily deduce from [7] that \textsc{Labeled Min PM} is 2-approximable in bipartite graphs of maximum degree 2. Using a weaker complexity hypothesis, we can even obtain that \textsc{Labeled Min PM} is not $2^{O(\log^{3/2} n)}$-approximable in bipartite graphs of maximum degree 3 on n vertices, unless \textsc{NP} $\subseteq \textsc{DTIME} \left(2^{O(\log^{1/3} n)}\right)$. Dealing with the unbounded degree case, this yields to the fact that \textsc{Labeled Min PM} is not in \textsc{polyLog-APX}, unless \textsc{P} = \textsc{NP}.

In the following, given an instance I, we denote by $\text{opt}(I)$ and $\text{apx}(I)$ the value of an optimal and an approximate solution, respectively for \textsc{Labeled Min PM}. We say that an algorithm A is a ρ-approximation (with $\rho \geq 1$) if $\text{apx}(I) \leq \rho \times \text{opt}(I)$ for any instance I.

Finally, in order to simplify the proofs exposed in the rest of the paper, the results concern a variation of \textsc{Labeled Min PM}, where the value of each perfect matching M is given by $\text{val}_1(M) = \text{val}(M) - 1$. This problem is denoted \textsc{Labeled Min PM_1} and we have for any instance I, $\text{apx}_1(I) = \text{apx}(I) - 1$ and $\text{opt}_1(I) = \text{opt}(I) - 1$. It is important to note that a $\rho(n)$-approximation of \textsc{Labeled Min PM} becomes a $2\rho(n)$-approximation of \textsc{Labeled Min PM_1}, and conversely a $\rho(n)$-approximation of \textsc{Labeled Min PM_1} remains a $\rho(n)$-approximation of \textsc{Labeled Min PM}. Actually, since \textsc{Labeled Min PM} is simple, [8] (i.e., the restriction to $\text{opt}(I) \leq k$ is polynomial), we can see that \textsc{Labeled Min PM} and \textsc{Labeled Min PM_1} are asymptotically equivalent to approximate. Hence, the proposed results for \textsc{Labeled Min PM_1} also hold for \textsc{Labeled Min PM}.

2 A self improving operation on some classes of graphs

We now propose a self improving operation for some classes of instances \mathcal{P}_k described as follows. $I = (H, \mathcal{L}) \in \mathcal{P}_k$ where $H = (V, E)$ if and only if the following properties are satisfied:

(i) H is planar of maximum degree k and connected.

(ii) $\exists u, v \in V$ such that $[u, u_1]$ and $[v, v_1]$ for some $u_1, v_1 \in V$ are the only edges incident to u and v (the vertices u and v will be called the extreme vertices of H). Moreover, these two edges have color c_0, i.e., $\mathcal{L}([u, u_1]) = \mathcal{L}([v, v_1]) = c_0$.

(iii) H is bipartite and admits a perfect matching (in particular, H has an even number of vertices).

(iv) $H[\{c_0\}] = (V, \mathcal{L}_0)$, the subgraph induced by edges of color c_0 does not have any perfect matching and the subgraph $H[\mathcal{L}(E) \setminus \{c_0\}]$ induced by edges of colors different from c_0 is acyclic.
(v) if \(H' = H \setminus \{u, v\} \) denotes the subgraph induced by \(V \setminus \{u, v\} \), then \(H'[\{c_0\}] = (V \setminus \{u, v\}, \mathcal{L}_0) \) has a perfect matching denoted by \(M_{c_0} \).

We have \(\mathcal{P}_1 = \emptyset \) and \(\mathcal{P}_2 \) is the set of odd paths from \(u \) to \(v \) alternating matchings \(M \) and \(M_{c_0} \) where \(M_{c_0} \) is only colored by color \(c_0 \). Finally, we define the class \(\mathcal{P}_k \) by \(\mathcal{P}_* = \cup_k \mathcal{P}_k \).

Restricted label squaring operation. Given an instance \(I = (H, \mathcal{L}) \in \mathcal{P}_k \) of Labeled Min PM, its label squaring instance is \(I^2 = (H^2, \mathcal{L}^2) \) with \(H^2 = (V^2, E^2) \), where

1. The graph \(H^2 \) is created by removing each edge \(e = [x, y] \) of \(H \) with color different from \(c_0 \) and placing instead of it a copy \(H(e) \) of \(H \), such that \(x \) and \(y \) are now identified with \(u \) and \(v \) of \(H(e) \), respectively.

2. For each copy \(H(e) \) of \(H \) and for an edge \(e' \) in \(H(e) \) with color different from \(c_0 \), the new color of \(e' \) is \(\mathcal{L}^2(e') = (\mathcal{L}(e), \mathcal{L}(e')) \). The remaining edges of copy \(H(e) \) keep their color \(c_0 \), that is if \(\mathcal{L}(e') = c_0 \), then \(\mathcal{L}^2(e') = c_0 \).

Let us prove that classes \(\mathcal{P}_k \) are closed under restricted label squaring operation.

Lemma 2.1 If \(I \in \mathcal{P}_k \), then \(I^2 \in \mathcal{P}_k \).

Proof: Let \(I \in \mathcal{P}_k \). The proofs of (i) and (ii) are obvious since \(u \) and \(v \) have degree 1.

For (iii), since \(H \) and \(H \setminus \{u, v\} \) admit a perfect matching, we deduce that \(u \in L \) and \(v \in R \) where \((L, R)\) is the bipartition of \(H \). Thus, we can extend the bipartition to \(H^2 \) by taking for each \(H(e) \) a copy of the bipartition. Finally, it is easy to verify that \(H^2 \) admits a perfect matching if \(H \) does. Actually, given a perfect matching \(M \) of \(H \), a perfect matching \(M^2 \) of \(H^2 \) can be constructed as follows: for any edge \(e \) of \(H \) with a color different from \(c_0 \), if \(e \in M \), then take for \(H(e) \) a copy of \(M \); if \(e \notin M \), then take for \(H(e) \setminus \{u, v\} \) a copy of a perfect matching of \(H \setminus \{u, v\} \) of color \(c_0 \). Moreover, given any edge \(e \) of \(H \) with color \(c_0 \), then \(e \in M^2 \) iff \(e \in M \).

For (iv) assume on the contrary that \(H^2[\{c_0\}] \) admits a perfect matching \(M \) and \(H[\{c_0\}] \) does not. By hypothesis, in each copy \(H([x, y]) \), the vertices \(x \) and \(y \) are not saturated by \(M \) because some vertices (in fact, an even positive number of vertices) of \(H([x, y]) \) are not saturated by \(M \) (otherwise, the restriction of \(M \) to \(H([x, y]) \) is a perfect matching for \(H \)), and \(x \) and \(y \) are the only vertices of \(H([x, y]) \) that do not need to be saturated by \(M \) (if other vertices are not saturated by \(M \) in \(H([x, y]) \), then \(M \) is not a perfect matching for \(H^2 \)). Hence, the edges of \(M \) which do not belong to \(H(e) \) form a perfect matching of \(H[\{c_0\}] \), contradiction. Moreover, using Property (ii), it is easy to verify that the subgraph \(H^2[\mathcal{L}^2(E^2) \setminus \{c_0\}] \) is acyclic whenever \(H[\mathcal{L}(E) \setminus \{c_0\}] \) is acyclic.

For (v) let \(M_{c_0} \) be a perfect matching of \(H' = H \setminus \{u, v\} \) only using color \(c_0 \). We complete \(M_{c_0} \) by taking for each copy \(H(e) \) a copy of \(M_{c_0} \). In this way, we obtain a perfect matching of \(H^2 \setminus \{u, v\} \) that uses color \(c_0 \) only.

We now propose an approximation preserving reduction using the label squaring operation on \(\mathcal{P}_k \).

Theorem 2.2 Let \(I = (H, \mathcal{L}) \in \mathcal{P}_k \). Any solution of \(I^2 \) with value \(\text{apx}(I^2) \leq \rho \text{opt}(I^2) \) for Labeled Min PM, can be polynomially converted into a solution of \(I \) for Labeled Min PM with a value \(\text{apx}(I) \leq \sqrt{\rho \text{opt}(I)} \).
Proof: Let \(M^* \) be an optimal perfect matching of \(I \in P_k \) and let \(L^* \) be the set of colors used by \(M^* \) (we have \(\text{opt}(I) = |L^*| \)). We construct a perfect matching \(M^2 \) for \(H^2 \) as follows. For each edge \(e \) of \(H \), we do the following. If \(L(e) \neq c_0 \) and \(e \in M^* \), then we take for \(H(e) \) a copy of \(M^* \) using colors \((L(e), l) \) for \(l \in L^* \) and color \(c_0 \). If \(L(e) \neq c_0 \) and \(e \notin M^* \), then we take for \(H(e) \setminus \{u, v\} \) a perfect matching for \(H \setminus \{u, v\} \) of color \(c_0 \). If \(L(e) = c_0 \), then \(e \in M^2 \) iff \(e \in M \). This matching uses \((\text{opt}(I) - 1)^2 + 1 \) colors and thus

\[
\text{opt}^1(I^2) \leq \text{opt}^2(I) \tag{1}
\]

Now, consider an approximate perfect matching \(M^2 \) of \(H^2 \) with value \(\text{apx}(I^2) \) and let \(H(e_1), \ldots, H(e_p) \) be the copies of \(H \) such that the restriction of \(M^2 \) to \(H(e_i) \) is a perfect matching. Hence, we may always assume that \(M^2 \setminus (\cup_{i=1}^p H(e_i)) \) only uses color \(c_0 \). Because of Property (v) and the fact that, in each copy \(H(e) \) with \(e \notin \{e_1, \ldots, e_p\} \), there is an even number of vertices (from Property (iii)) and so neither \(u \) nor \(v \) is saturated. Therefore, if \(L' = \{L(e_i) : i = 1, \ldots, p\} \) the set of colors of these edges in \(H \), then for any \(c_j \in L' \) there exists a perfect matching \(M_{c_j,k} \subseteq M^2 \) in copy \(H(e_k) \) with \(L(e_k) = c_j \). Let \(M_{c_j} \) be one of these perfect matchings of \(H \), one that minimizes \(|L(M_{c_j,k})| \) for any \(c_j \in L' \), where \(|L(M_{c_j,k})| \) is the number of colors used by \(M_{c_j,k} \) and let \(M_0 \) be a perfect matching of \(H \) containing edges \(\{e_1, \ldots, e_p\} \) and all the other edges having color \(c_0 \).

The approximate perfect matching \(M \) of \(I \) will be given by one of the matchings \(M_{c_j} \) or \(M_0 \) with value \(\text{apx}(I) = \min\{|L(M_0)|, |L(M_{c_j})| : c_j \in L'\} \). Thus, we deduce that \(\text{apx}^1(I) = \text{apx}(I) - 1 = \min\{|L(M_0)| - 1, |L(M_{c_j})| - 1 : c_j \in L'\} \) and hence:

\[
\text{apx}^2(I) \leq (|L(M_0)| - 1) \min\{|L(M_{c_j})| - 1 : c_j \in L'\} \leq \sum_{c_j \in L'} (|L(M_{c_j})| - 1) \leq \text{apx}^1(I^2) \tag{2}
\]

The last inequality is valid because for \(c_{j_1} \neq c_{j_2} \), the colors used in \(M_{c_{j_1}} \) are different (except for \(c_0 \)) from the ones used in \(M_{c_{j_2}} \). Applying inequality (2) with an optimal perfect matching \(M^2 \) of \(H^2 \), we obtain \(\text{opt}^2(I) \leq \text{opt}^1(I^2) \). Using inequality (1), we deduce \(\text{opt}^2(I) = \text{opt}^1(I^2) \) and the expected result follows.

3 Inapproximability results

In [7], an inapproximability bound of \(O(\log n) \) is obtained for Labeled Min PM in complete bipartite graphs via a reduction from Set Cover. A slight modification of this reduction allows us to obtain the same result for instances in \(P_s \).

Theorem 3.1 Labeled Min PM in is not \(c \log n \) approximable for some constant \(c > 0 \) for instances in \(P_s \) having \(2n \) vertices, unless \(P = NP \).

Proof: Given a family \(S = \{S_1, \ldots, S_{m_0}\} \) of subsets of a ground set \(X_0 = \{x_1, \ldots, x_{m_0}\} \) (we assume that \(\cup_{i=1}^{m_0} S_i = X_0 \)), a set cover of \(X_0 \) is a sub-family \(S' = \{S_{f(1)}, \ldots, S_{f(p)}\} \subseteq S \) such that \(\cup_{i=1}^{p} S_{f(i)} = X_0 \); MinSC is the problem of determining a minimum-size set cover \(S^* = \{S_{f^*(1)}, \ldots, S_{f^*(q)}\} \) of \(X_0 \). Given an instance \(I_0 = (S, X_0) \) of MinSC, its characteristic graph \(G_{I_0} = (L_0, R_0; E_{I_0}) \) is a bipartite graph with a left set \(L_0 = \{l_1, \ldots, l_{m_0}\} \) that represents the members of the family \(S \) and a right set \(R_0 = \{r_1, \ldots, r_{m_0}\} \) that
Figure 1: The gadget $H(x_j)$.

represents the elements of the ground set X; the edge-set E_{I_0} of the characteristic graph is defined by $E_{I_0} = \{[l_i, r_j] : x_j \in S_i\}$.

From I_0, we construct the instance $I = (H, L)$ of Labeled $Min PM_1$ containing (n_0+1) colors $\{c_0, c_1, \ldots, c_{n_0}\}$, described as follows:

- For each element $x_j \in X_0$, we build a gadget $H(x_j)$ that consists of a bipartite graph of $2(d_{G_{I_0}}(r_j) + 3)$ vertices and $3d_{G_{I_0}}(r_j) + 4$ edges, where $d_{G_{I_0}}(r_j)$ denotes the degree of vertex $r_j \in R$ in G_{I_0}. The graph $H(x_j)$ is illustrated in Figure 1 where the vertices $\{l_{j,f}(1), \ldots, l_{j,f}(p)\}$ are the neighbors of r_j in G_{I_0} and $p = d_{G_{I_0}}(r_j)$.

- A distinct color is associated to each subset of S. More precisely, assume that vertices $\{l_{j,f}(1), \ldots, l_{j,f}(p)\}$ with $p = d_{G_{I_0}}(r_j)$ are the neighbors of r_j in G_{I_0}, then color $H(x_j)$ as follows: for any $k = 1, \ldots, p$, $L(v_{3,j}, l_{j,f(k)}) = c_{f(k)}$ and the other edges receive color c_0.

- We complete $H = \cup_{x_j \in X} H(x_j)$ by adding edges $[v_{2,j}, v_{1,j+1}]$ with color c_0 for $j = 1, \ldots, m_0 - 1$.

- Finally, we set $u = v_{1,1}$ and $v = v_{2,m_0}$.

Clearly, $I \in \mathcal{P}_x$ and has $2n = 2 \sum_{r_j \in R}(d_{G_{I_0}}(r_j) + 3) = 2|E_{I_0}| + 6m_0$ vertices.

Let S^* be an optimal set cover on I_0. We can associate to each element x_j a subset S_k of S^* that "covers" x_j. Then, we construct a perfect matching M^* as follows. The restriction of M^* to gadget $H(x_j)$ is a perfect matching M_j: $[l_{j,f(k)}, v_{3,j}] \in M_j$ and $[r_{j,f(k)}, v_{4,j}] \in M_j$ (S_k be the subset covering x_j); all the others edges of M_j are of color c_0. Thus, the perfect matching M^* of $I = (H, L)$ uses exactly $(|S^*| + 1)$ colors. Conversely, let M be a perfect matching on I. We have the following property: in each gadget $H(x_j)$, the edge of this gadget which is adjacent to $v_{2,j}$ is in M (this is true for $H(x_{m_0})$, and this can easily be
proved by induction for all the other gadgets). This is also the case for the edge of this
gadget which is adjacent to \(v_{1,j} \). This implies that, in each gadget \(H(x_j) \), there is exactly
one edge of color different from \(c_0 \) that belongs to \(M \). We include the subset \(S_k \) associated
with this edge in the set cover. In conclusion, the subset \(S' = \{ S_k : c_k \in \mathcal{L}(M) \} \) of \(S \) is a
set cover of \(X \) using \((|\mathcal{L}(M)| - 1) \) sets.

Now, it is well known that the set cover problem is \(\mathsf{NP} \)-hard to approximate within
factor \(c \log n_0 \) for some constant \(c > 0 \), [2]. This result also applies to instances \((X, S)\) when
\(|X| \) and \(|S| \) are polynomially related (i.e., \(|X|^q \leq |S| \leq |X|^p \) for some constants \(p, q \)).

Hence, given such an instance \(I_0 = (X, S) \), from any algorithm \(A \) solving \(\text{Labeled Min PM}_1 \) within a performance ratio \(\rho_A(I) \leq \frac{c^2}{q+1} \times \log(n) \) for a bipartite graph on \(2n \)
vertices, we can deduce an algorithm for \(\text{MinSC} \) that guarantees the performance ratio
\(c \frac{1}{q+1} \log(n) \leq c \frac{1}{q+1} \log(n_0^{q+1}) = c \log(n_0) \), a contradiction.

Starting from the \(\mathsf{APX} \)-completeness result for the vertex cover problem in cubic graphs
[1], we are able to obtain the following result.

Corollary 3.2 \(\text{Labeled Min PM}_1 \) for instances in \(\mathcal{P}_3 \) is not in \(\mathsf{PTAS} \), unless \(\mathsf{P}=\mathsf{NP} \).

Proof: Starting from the restriction of set cover where each element \(x_i \) is covered by
exactly two sets (this case is usually called vertex cover where the sets and elements can
respectively be viewed as vertices and edges), we apply the same proof as in Theorem 3.1.
The instance \(I \) becomes an element of \(\mathcal{P}_3 \), and using for instance the \(\mathsf{APX} \)-completeness
result of [1], the expected result follows.

By applying the well known method of self improving, we obtain the two following results:

Theorem 3.3 \(\text{Labeled Min PM}_1 \) for instances in \(\mathcal{P}_3 \) is not in \(\mathsf{APX} \), unless \(\mathsf{P}=\mathsf{NP} \).

Proof: Assume the reverse and let \(A \) be a polynomial algorithm solving \(\text{Labeled Min PM}_1 \)
within a constant performance ratio \(\rho \). Let \(\varepsilon > 0 \) (with \(\varepsilon < \rho - 1 \)) and choose the smallest
integer \(q \) such that:

\[
q \geq - \log_2 \log_\rho(1 + \varepsilon)
\]

(3)

Consider now an instance \(I = (H, \mathcal{L}) \in \mathcal{P}_3 \) and use the restricted label squaring op-
eration on \(I \). We produce the instance \(I^2 = (H^2, \mathcal{L}^2) \) and by repeating \(q \) times this operation
on \(I^2 \), we obtain thanks to Lemma 2.1 the instance \(I^{2^q} = (H^{2^q}, \mathcal{L}^{2^q}) \in \mathcal{P}_3 \), in
time \(P(|I|) \) for some polynomial \(P \) since on the one hand, \(I^2 \) is obtained from \(I \) in time
\(O(|I^2|) \) (we have \(|V(H^2)| = O(|V(H)|^2) \) and \(|\mathcal{L}^2(E(H^2))| = O(|\mathcal{L}(E(H))|^2) \)) and on the
other hand, we repeat this operation a constant number of times. Using Theorem 2.2, from
the \(\rho \)-approximation on \(I^{2^q} \) given by \(A \), we obtain a \(\rho^{2^{-q}} \)-approximation on \(I \). Thanks to
inequality (3), we deduce \(\rho^{2^{-q}} \leq 1 + \varepsilon \). Hence, we obtain a polynomial time approximation
scheme for instances in \(\mathcal{P}_3 \), a contradiction with Corollary 3.2.

Theorem 3.4 For any \(\varepsilon > 0 \) \(\text{Labeled Min PM}_1 \) is not \(2^{O(\log^{1-\varepsilon} n)} \)-approximable for
instances in \(\mathcal{P}_3 \) on \(n \) vertices, unless \(\mathsf{NP} \subseteq \mathsf{DTIME} \left(2^{O(\log^{1/\varepsilon} n)} \right) \).
Proof: Let $\varepsilon > 0$ and $I = (H, \mathcal{L}) \in \mathcal{P}_3$ where H has n vertices. Choose the smallest integer p such that $n^{2^p} \geq 2^{\log^{1/\varepsilon} n}$. Thus, $2^{2^p \times \log n} \geq 2^{\log^{1/\varepsilon} n}$ and then,

$$2^{p \times \varepsilon} \geq \log^{1-\varepsilon} n$$

(4)

Using the restricted label squaring operation on I, we produce the instance $I^2 = (H^2, \mathcal{L}^2)$. By repeating p times this operation on I^2, we obtain the instance $I^{2^p} = (H^{2^p}, \mathcal{L}^{2^p}) \in \mathcal{P}_3$. Since H has n vertices, we derive that the number n' of vertices of H^{2^p} and the number $|\mathcal{L}^{2^p}(E(H^{2^p}))|$ of colors of H^{2^p} satisfy:

$$n' \leq n^{2^p} \text{ and } |\mathcal{L}^{2^p}(E(H^{2^p}))| \leq |\mathcal{L}(E(H))|^{2^p}$$

(5)

Now, assume that we have a $f(n')$-approximation on I^{2^p} where $f(n') \leq 2^{c \times \log^{1-\varepsilon} n'}$ for some $c > 0$. Using Theorem 2.2, we obtain a $f(n')^{2^{-p}}$-approximation on I. Using inequalities (4) and (5), we deduce:

$$\text{apx}_1(I) \leq f(n')^{2^{-p}} \text{opt}_1(I)$$

$$\leq 2^{c \times \log^{1-\varepsilon} n' / 2^p} \text{opt}_1(I)$$

$$\leq 2^{c \times \log^{1-\varepsilon} n / 2^{p+1}} \text{opt}_1(I)$$

$$\leq 2^{c \text{opt}_1(I)}$$

By definition of p, $n^{2^p-1} < 2^{\log^{1/\varepsilon} n}$, and thus $n' \leq n^{2^p} < 2^{2^{\log^{1/\varepsilon} n}}$. In conclusion, using inequality (5), we obtain a constant approximation for I in time $\text{poly}(n') = 2^{O(\log^{1/\varepsilon} n)}$, and thus, a contradiction to Theorem 3.3.

It is natural to ask the question whether the problem is easier in cubic bipartite graphs. Here, we prove that the answer is negative.

Theorem 3.5 Labeled Min PM$_1$ is not in APX in connected planar cubic bipartite graphs, unless $P = NP$.

Proof: The proof consists of two steps. First, using a reduction quite similar to the one of Corollary 3.2, we prove that Theorem 3.4 also holds for the sub-family \mathcal{P}'_3 of \mathcal{P}_3 where each vertex has a degree 3, except u and v. Then, we transform any instance of \mathcal{P}'_3 into a connected planar cubic bipartite graph.

Let us prove the first point. Let $G = (V, E)$ with $V = \{v_1, \ldots, v_n\}$ and $E = \{e_1, \ldots, e_n\}$ be an instance of vertex cover. We associate to any edge $e_j = [x,y]$ a gadget $H(e_j)$ described in Figure 2. All edges of $H(e_j)$, except $[v_{3,j}, l_{j,x}]$ and $[v_{3,j}, l_{j,y}]$ have color c_0. We have $\mathcal{L}([v_{3,j}, l_{j,x}]) = c_x$ and $\mathcal{L}([v_{3,j}, l_{j,y}]) = c_y$. Finally, $H(e_j)$ is linked to $H(e_{j+1})$ using the graph depicted in Figure 3 where each edge is colored with c_0. We conclude this part of the proof by using arguments similar to ones given in the proof of Corollary 3.2 (the gadgets considered in both reductions having the same basic properties). Clearly, Labeled Min PM$_1$ is APX-hard in class \mathcal{P}'_3. Since the restricted label squaring operation also preserves the membership in \mathcal{P}'_3, we deduce that Labeled Min PM$_1$ is not in APX when the instances are restricted to \mathcal{P}'_3.

Now, let us prove the second point. Given $I \in \mathcal{P}_3$ with $I = (G, \mathcal{L})$, we consider the instance I' where G is duplicated 3 times into G_1, G_2, G_3. If u_i, v_i denote the extreme
vertices of G_i, we shrink vertices u_1, u_2, u_3 into u and v_1, v_2, v_3 into v. Clearly, this new graph G' is connected bipartite, planar and cubic. Given any perfect matching M' of G', the two edges of color c_0 adjacent to u and v in M' necessarily lie in the same copy of G, because there is an even number of vertices in each copy. Finally, since we can restrict ourselves to perfect matchings M' of G' that use only color c_0 for exactly two copies of G, the result follows.

Obviously, a proof similar to the one given in Theorem 3.4 can be applied to the Theorem 3.5 leading to the following conclusion.

Corollary 3.6 For any $\varepsilon > 0$ Labeled Min PM_1 is not $2^{O(\log^{1-\varepsilon} n)}$-approximable in connected planar cubic bipartite graphs on n vertices, unless $NP \subseteq DTIME \left(2^{O(\log^{1/\varepsilon} n)}\right)$.

Dealing with the unbounded degree case (that is instances of \mathcal{P}_s), we can deduce the following stronger result:

Theorem 3.7 Labeled Min PM_1 for instances in \mathcal{P}_s is not in polyLog-APX, unless $P = NP$.

Proof: Assume on the contrary that Labeled Min PM_1 is $f(n)$-approximable with $f(n) \leq c \log^k n$ for some constants $c > 0$ and $k \geq 1$. Let $I = (H, \mathcal{L}) \in \mathcal{P}_s$ where H has $2n$ vertices.
Let $p = \lceil \log k \rceil + 1$. Using as previously 2^p times the restricted label squaring operation on I, we produce in polynomial time the instance $I^{2^p} = (H^{2^p}, L^{2^p}) \in \mathcal{P}_*$. The same arguments as in Theorem 3.4 allow us to obtain a contradiction with Theorem 3.1 since from Property (iv) of Lemma 2.1, the inequality (5) also holds.

Acknowledgments. The author wants to thank Bruno Escoffier and Laurent Gourvès for useful comments on earlier versions of this paper.

References

