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Complexité moyenne pour évaluer des requêtes basées sur des

définitions récursives dans les bases de données relationnelles

Résumé

Les coûts d’exécution de divers types de requêtes dans les bases de données sont établis pour
deux algorithmes d’évaluation de requêtes dans le cas où les relations de base de données
sont représentées par des forêts d’arbres orientés étiquetés. Les coûts d’exécution sont tout
d’abord calculés pour une forêt donnée. Puis les moyennes de ces coûts sont calculées en
considérant toutes les bases de données qui peuvent être représentées par une forêt avec un
nombre donné de nœuds.

Mots-clés: base de données relationnelle, définition récursive, arbre, algorithme, complexité.

Average-case complexity for the execution of recursive definitions on

relational databases

Abstract

The execution costs of various types of database queries are evaluated for two common query
evaluation algorithms in the case where the database relations are represented by forests of
labelled oriented trees. The execution costs are computed first for a given forest. Then, the
averages of these costs, computed over all databases representable by forests with a given
number of nodes, are also evaluated.

Keywords: relational database, recursive definition, tree, algorithm, complexity.
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1 Introduction

In [6] the mean execution costs of some query evaluation algorithms were examined, for database
relations represented by full tree structures. In the present paper we extend these results to the
case of any forest-like structure. Moreover, we perform an average-case analysis over all forests
on a given number of nodes. We refer to [6] for motivation and for references to former results.
The simplicity of the forest structure allows us to perform a fairly detailed analysis and to derive
tight time bounds.
Our work complements the one done by Bancilhon and Ramakrishnan ([2]). These authors treat
relations represented by some particular tree structures (full trees), by inverted tree structures
and also by what they call cylinders (covering graphs of a particular class of graded partial
orders), whereas we consider any kind of tree, in fact any forest, which may represent a database
relation.

We present two query evaluation techniques which we call the direct method and the in-
termediate storage method, respectively. Using database terminology, the direct method is a
prolog-like top-down evaluation which uses a reordering of goals in order to ensure termination
(we will be more precise below); the intermediate storage method is a two-stage method: first,
the constants are pushed into the recursive rules and then, the query is evaluated in a bottom-up
semi-näıve fashion ([2]).

The derivation of mean execution costs has now become an important chapter in the analysis
of algorithms ([10]). Average-case analysis provides results which, to some extent, summarize
the salient features of the behaviour of the algorithm and can highlight aspects of the problem
that are not visible through the most commonly used worst-case analysis. In fact, by using
average-case evaluation, we can gain a quick insight into the properties of the algorithms with-
out depending on information that is really too detailed to be handled in practice. Of course,
we do not imply that this mean execution costs, based on the hypothesis of equal occurrence
probabilities for the distinct possible queries, or, at the higher level, of equal occurrence prob-
abilities for the distinct possible queries forest structures for the EDB relation, reflect exactly
the actual costs in every situation occurring in practice. However, we have undertaken to treat
the average-case complexity analysis of logic programming algorithms in a systematic way and
to produce asymptotic expressions for this complexity; this, to our knowledge, is the first time
that such a theoretical thought process is undertaken.

The paper is organized as follows. In the next section we introduce the model and discuss its
properties. In section 3 we present the two algorithms, the direct and the intermediate storage
methods. Section 4 deals with the study of the average-case complexity of these two methods
when the forest structure of the EDB relation is fixed. Finally, in section 5, asymptotical
expressions for the mean execution costs (taken over all forests) are given.

2 The model

Let Q denote a binary relation on some set X (data set). We are concerned with the analysis
of the cost of queries R(x, y) defined recursively as follows:

re : R(x, y)← Q(x, y)

rr : R(x, y)← Q(x, z), R(z, y)

Clearly, the relation R holds precisely for the pairs (x, y) for which there is a directed path
from x to y in the digraph of Q. Accordingly, Q is called external database (EDB) relation, R,
defined by means of the above rules, is called internal database (IDB) relation, while the above
rules are called the transitive closure definition in the database terminology.
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We will assume in this paper that the graph of Q is a forest F of labelled oriented trees,
that is, trees, with labeled nodes, where the left-to-right order of subtrees is immaterial (for
more details on the definition of this type of trees, see [3]) called labelled oriented forest. So,
the problem studied in this paper is the computation of the average-case complexity of the two
algorithms (algorithms 1 and 2), presented in section 3, when they operate on labelled oriented
forests.

2.1 Some properties of the model

We consider the nodes of the forest as distinguishable points, since they represent distinct values
of the domain of Q. For convenience, we fix the set of labels: X = {1, 2, . . . , n}.

We define as usual the execution cost for each type of query of interest when applied to the
EDB represented by a fixed forest ∆, as the average, taken over all instances of the query, of the
number of steps used (by some given algorithm) to evaluate an instance of this query. Then we
will compute, again for each fixed query, the mean of the execution costs taken over all distinct
forests with a given number of nodes.

The following notion of node equivalence is basic in our work, since, as it will be seen, all
our calculations are expressed in terms of classes of equivalent nodes.

Definition 1 (node equivalence). Consider a forest ∆ = {T1, . . . , Tk}. The nodes of ∆ are
partitioned into equivalence classes C1, . . . , Cl recursively defined as follows:

• every node is equivalent to itself;

• two nodes of ∆, none of which is the root of a component tree of ∆, are equivalent if their
fathers are equivalent and, moreover, the oriented subtrees emanating from these nodes
are isomorphic;

• two roots of component trees Ti and Tj of ∆ are equivalent iff Ti and Tj are isomorphic
oriented trees.

Given an oriented forest ∆ and the partition of its nodes into equivalence classes C1, C2, . . . , Cl,
we will use the following notations:

∆: the given forest structure;
n(∆): the order (number of nodes) of ∆;

Ti: the subtree rooted at a node of class i;
n(Ti): the order of Ti;

li: the level of the nodes of class i (assuming that the roots of the component trees are
at level 0);

card(i): the cardinality of class i;
hi: the height of the subtree rooted at a node of class i;

Dk
i : the set of classes to which belong the kth descendants of a node of class i; obviously,

D0
i = {i} and D1

i corresponds to the children of nodes of class i;
σi: the number of nodes of class i having the same father (by definition of the classes,

all the nodes of each class have the same number of children of each class).

The node equivalence relation leads to the following “uniformity” proposition.

Proposition 1. Consider a fixed oriented forest ∆. The number of labellings of ∆ in which a
given label is assigned to a node of a given equivalence class is equal to the cardinality of this
class multiplied by a constant, which is the same for all classes.
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Proof: Let α(∆) be the number of distinct labellings of ∆. Let Ki denote the number of
these labellings in which the label j is assigned to some node in class i. Setting n = n(∆), we
have α(∆) = Cn

card(1),card(2),...,card(l), i.e., α(∆) is equal to the number of ways of distributing

the n labels within the classes (indeed exchanging two labels within the same class, results in the
same labelled forest and two distinct distributions of the labels give distinct labelled forests), and

Ki = Cn−1
card(i)−1C

n−card(i)
card(1),...,card(i−1),card(i+1),...,card(l), where the first term accounts for the choices

of the labels of class Ci, other than label j, and the second for the number of ways in which the
remaining labels can be distributed in the rest of the classes. We can write now

Ki = α(∆)

( n−1
card(i)−1

)

( n
card(i)

) = card(i)
α(∆)

n(∆)
. (1)

2.2 Performance measures

Let again ∆ be any forest on n nodes. The queries that are usually considered fall into the
following categories:

• list the descendants in ∆ of a particular node α: query R(α, x);

• does there exist in ∆ a path linking two particular nodes α and β?: query R(α, β);

• list the ascendants in ∆ of a particular node β: query R(y, β);

• find the paths linking every pair (x, y) of nodes in ∆: query R(x, y).

We shall denote by c1
R (resp., c12

R , c2
R, and c0

R), the corresponding execution cost (for a given
forest on n nodes) of the query R(α, y) (resp., R(α, β), R(x, β) and R(x, y)). The mean execution
costs (averaged over all forests on n nodes) will be denoted by replacing c by γ in the previous
notations, i.e., γ1

R, γ12
R , and so on. Finally, the costs for the relation Q will be denoted by

replacing by Q the subscript R in the above notations, i.e., c1
Q, c12

Q , and so on. We assume as
usual that the quantities cQ are given. Details on this matter can be found in [9].

3 The algorithms

We describe in this section the two query evaluation algorithms, the average-case complexity of
which we study in the sequel. Moreover, for each query, we describe the type of the obtained
answer in terms of forest’s parameters.

3.1 The direct method algorithm

The first algorithm (algorithm 1), called direct method, is a kind of exhaustive procedure which,
without applying any cost reduction technique, performs a prolog-like top-down evaluation, this
evaluation using a reordering of goals in order to ensure termination.

Concerning query R(α, β), procedure bfs(α, β) consists of searching, in a breadth-first-search
manner ([1]), the nodes of the subtree rooted at α until either β is found, or the whole subtree
is exhausted.

Concerning query R(x, β), the result of the execution of re (line (∗∗)) is the list of all the
nodes of the forest. Moreover, once this execution is completed, all the values of the nodes are
known and, consequently, the evaluation of the query R(x, β) is reduced to the evaluation of the
query R(α, β).

Finally, for query R(x, y), once all the values of the domain of Q are known, the evaluation
of R(x, y) is reduced to the evaluation of R(α, y).
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begin
case R(·, ·) do

R(α, y): execute re with α fixed;
store the results
repeat

(∗) evaluate Q(α, z) of rr with α fixed;
for each ζ such that Q(α, ζ) = true do

execute (∗) by substituting ζ for α
od

until no new results
R(α, β): bfs(α, β)

(∗∗) R(x, β): execute re with both variables free
for each node value ζ obtained from the execution of line (∗∗) do

execute case R(α, β) by substituting ζ for α
od

(∗ ∗ ∗) R(x, y): execute re with both variables free;
for each node value ζ obtained from the execution of line (∗∗) do

execute case R(α, y) by substituting ζ for α
od

od
end.

Algorithm 1: The direct method algorithm.

begin
execute re and store tuples
repeat

execute rr putting in the place of the recursive predicate the last stored tuples;
store new tuples

until no new tuples
end;

Procedure 1: The query pre-processing.

3.2 The intermediate storage algorithm

The intermediate storage method (algorithm 2) is a two-stage method: first, during a query
pre-processing, the constants are pushed into the recursive rules; next, the query is evaluated in
a bottom-up semi-näıve manner.

The query pre-processing is a natural cost-reduction strategy reducing the number of accesses
to the disk where data are stored; it is described in procedure 1.

For the application of procedure 1 to the transitive closure definition, the following condition
must hold: when there exist bound variables, at least one bound variable corresponding to some
attribute must have the same value in the occurrences of the recursive predicate on both sides of
the recursive rule, so that the previously stored tuples may be used. For instance, the intermediate
storage method cannot be applied for the query R(α, y).
As a matter of fact, the procedure works by creating chains of tuples such that, for any two
successive tuples in a chain, the second attribute of the first tuple has the same value as the first
attribute of the second tuple. The applicability condition mentioned above ensures that such

4



begin
case R(·, ·) do

R(α, β): starting from β use procedure 1 to climb the tree up to its root
until either α is found or the root of the tree is attained;

R(x, β): execute re;
starting from β use procedure 1 to climb the tree up to its root;
store all the nodes on the path;

(#) R(x, y): execute re;
for each node value ζ obtained from the execution of line (#) do

execute case R(x, β) by substituting ζ for β
od

od
end.

Algorithm 2: The intermediate storage algorithm.

chains can be created. For more details on intermediate storage, we refer to [5].

3.3 The answers to the queries

As usually, in order to analyze the average-case complexity of the devised algorithms we first
need to characterize the type of the answer in terms of input parameters.

3.3.1 ∆ is fixed

For case R(α, y) (admitted only by algorithm 1), the answer will be the list of the labels of the
nodes of the subtree emanating from α. Moreover, the case where α is a leaf is trivial, since it
yields the empty set.

For case R(α, β), there is an answer to the query iff β is contained in the subtree rooted
at α; so the answer here will be “yes” or “no”.

For case R(x, β), the answer will be the list of labels on the path from β to the root of the
tree containing β.

Finally, for case R(x, y), the answer will be the list (empty in the case where x and y belong
to two distinct trees of ∆) of the nodes on the paths between all the pairs of nodes of ∆.

3.3.2 Considering all the forests on a fixed number of nodes

The average cost for case R(α, y) using algorithm 1 is a function of the average order of a
subtree (the average being taken over all labelled oriented forests) of a labelled oriented forest
on n nodes.

For case R(α, β), according to algorithm 1, this query involves either the exploration of the
whole subtree of α when β does not belong to this subtree (in this case the average cost will
be equal to the one of the case R(α, y)) or, else, all the nodes of this subtree belonging to the
levels strictly higher than the level of β (bfs search; in this case, a kind of average length of
forest path, over all the forests on a fixed number of nodes, will be implicated in the average
cost computation).
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For the two last cases (R(x, β) and R(x, y)) the average cost will be, once more, a function
of the average forest path size, over all the labelled oriented forests on a given number of nodes.

4 The execution costs for a given EDB

4.1 The direct method

4.1.1 The query R(α, y)

Proposition 2. The execution cost c1
R is given by:

c1
R =

C
∑

i=1

card(i)

n(∆)
n(Ti) c1

Q. (2)

Proof: Let α be the label of a node in class Ci. The corresponding proportion of labellings is
equal to Ki/α(∆) = card(i)/n(∆), according to (1). For each of the n(Ti) nodes of Ti the file
containing Q will be searched with cost c1

Q. Thus the execution cost, obtained by averaging the

costs n(Ti)c
1
Q over all the classes with the weights card(Ci), is given by (2).

4.1.2 The query R(α, β)

We first need the following proposition.

Proposition 3. Suppose that α is the label of a node of class Ci. Then the conditional prob-
ability pβ/α that a given label β is contained in the subtree rooted at α is given by pβ/α =
(n(Ti)− 1)/(n(∆)− 1).

For the proof, we only have to observe that the number of labellings considered in which a given
subset of labels L ⊆ {1, 2, . . . , n} \ {α} with |L| = n(Ti) − 1 is assigned to the nodes of Ti is
independent of L. The probability above is just the proportion of these sets which contain β.

We can now proceed to the evaluation of c12
R .

Proposition 4. The execution cost c12
R is given by:

c12
R =

C
∑

i=1

card(i)

n(∆)

[

n(∆)− n(Ti)

n(∆)− 1
X(i) +

n(Ti)− 1

n(∆)− 1
Y (i)

]

(3)

where

X(i) = n(Ti)(c
12
Q + c1

Q) (4)

Y (i) =
1

hi−1
∑

j=0
gi
j

hi−1
∑

j=1



gi
j

j−1
∑

k=0

(gi
k + f i

k) +
gi
j(g

i
j − 1)

2
+

gi
jf

i
j

2



 (c12
Q + c1

Q) + c12
Q . (5)

Proof: Let α be the label of a node of class i. We distinguish two possibilities for β.
(i) The label β is not contained in the subtree rooted at α. The probability of this event is

1− pβ/α = (n(∆)− n(Ti))/(n(∆)− 1).
The whole subtree rooted at α (including α) will be searched with cost X(i) given by expression 4.

(ii) The label β is contained in the subtree rooted at a. This happens with probability pβ/α.
The subtree will be searched until the father of β is attained. According to the uniformity
property, which applies to the subtree too, the label β is uniformly distributed over the nodes
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of this subtree, excluding α. This implies that the same property holds for the father of β with
respect to all the internal nodes of the subtree. For each node visited before the father of β, the
cost is equal to c12

Q + c1
Q, while the cost of searching from the father of β is c12

Q .
We recall here that under the bfs method, the nodes are searched level by level starting

from node α down to the level preceding immediately that of β, this last level being visited until
the father of β is attained. Let us suppose that β’s father is situated at level j of the subtree.
Before β’s father is reached, all nodes at levels with index lower than j will have already been
visited and also perhaps some nodes at level j.

Let us define the following quantities:

gi
j : the number of internal nodes at level j of a subtree rooted at a node of class i,

0 ≤ j < hi;
f i

j : the number of leaves at level j of a subtree rooted at a node of class i, 0 ≤ j ≤ hi.

These quantities can be expressed as follows in terms of the quantities defined in section 2:

gi
0 = 1{D1

i
6=∅}

gi
j =

∑

k1∈D1

i

σk1

(

∑

k2∈D1

k1

σk2
. . .

(

∑

kj∈D1

kj−1

D1

kj
6=∅

σkj

)

. . .
)

, 1 ≤ j < hi (6)

f i
0 = 1{D1

i
=∅}

f i
j =

∑

k1∈D1

i

σk1

(

∑

k2∈D1

k1

σk2
. . .

(

∑

kj∈D1

kj−1

D1

kj
=∅

σkj

)

. . .
)

, 1 ≤ j ≤ hi (7)

where the symbol 1{X} denotes the indicator function of the event X.
The execution cost Y (i) (expression 5) for case (ii) is obtained by averaging over all internal

nodes the search cost corresponding to previously visited nodes.
Let us note here that since the indices have ranges linear in n, the quantities gi

j (expres-

sion (6)), f i
j (expression (7)) and, consequently Y (i) (expression (5)) can all be computed in

polynomial time.
In (5) the expression in square brackets gives the number of nodes visited before the father

of β, the latter being an internal node at level j of the subtree rooted at α, summed over all
internal nodes of that level. The first term in this expression accounts for nodes at levels with
index lower than j, that have been visited. The second term corresponds to internal nodes at

level j that have been visited before the father of β and is equal to
∑gi

j

k=1(k−1). The third term
accounts for leaves at level j, that are visited. Its expression is derived as follows. Let us suppose
that there are n + m nodes at a given level where n is the number of internal nodes and m is
the number of leaves. We denote by Z(n, m) the average of the sum, taken over the internal
nodes of the considered level, of the number of leaves that have been visited before each of these
nodes, the average being taken over all possible arrangements of the n+m nodes. We can write:
Z(n, m) = [n/(n + m)]Z(n− 1, m) + [m/(n + m)][n + Z(n, m− 1)], where the first term on the
right-hand side corresponds to the event that during the search we first encounter an internal
node and the second term to the event that we first encounter a leaf. With the initial conditions
Z(n, 0) = 0 and Z(0, m) = 0, the above expression for Z(n, m) yields: Z(n, m) = nm/2. By
substituting gi

j and f i
j for n and m, respectively, we complete the derivation of (5).

The expressions in (4) and (5) for cases (i) and (ii), respectively, are combined in (3) to
yield the execution cost.
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4.1.3 The query R(x, β)

We assume that the edges of the forest are stored as usual with direct access to their first node.
The execution of line (∗∗) of algorithm 1 is required because we need here direct access to the
second node of each edge.

Proposition 5. The execution cost c2
R verifies

c2
R ∼ c2

Q + c0
Q + [n(∆)− 1]c12

R . (8)

Proof: Equation (8) is immediately derived from case R(x, β) of algorithm 1.

4.1.4 The query R(x, y)

Proposition 6. The execution cost c0
R verifies

c0
R ∼ c0

Q + [n(∆)− 1]c1
R. (9)

Proof: Expression in (9) is immediately derived from case R(x, y) of algorithm 1.

4.2 The intermediate storage algorithm

4.2.1 The query R(α, β)

Before proceeding to the evaluation of the execution cost we need the following observation, the
proof of which is completely similar to the one of proposition 3 and is omitted.

Suppose that β is the label of a node of class i (level li). Then the probability p′α/β of the
event that a given label α is situated on the path from the root of the component tree containing β
down to β is given by p′α/β = li/(n(∆)− 1). Furthermore, given that α is situated on the path
from the root of the component tree containing β down to β, the probabilities that α labels any
node on this path are equal.

Proposition 7. The execution cost c12
R using the intermediate storage algorithm is equal to:

c12
R =

C
∑

i=1

card(i)

n(∆)

[(

1− li
n(∆)− 1

)

(li + 1) +
li

n(∆)− 1

li + 1

2

]

c2
Q. (10)

Proof: Suppose that β is the label of a node of class i (level li). The forest will be searched
from β to the root of the component tree containing β until the label α is found or until the
tuples are unsuccessfully exhausted. At each step of the search procedure the cost is c12

Q in case

of success and c12
Q +c2

Q in case of failure. Since, however, we are searching on a tree structure, we

have c12
Q = c2

Q, because there is at most one tuple having β as the value of its second attribute.
Moreover, we need not to search twice in case of failure, since a single search will provide us
with the appropriate tuple whether the step is successful or not. Hence the total search cost for
all the steps of the procedure is equal to c2

Q.
We distinguish two possibilities:
(j) The label α does not belong to the path from β to the root of the component tree

containing β. In this case the whole path is (unsuccesfully) searched. This event happens with
probability 1− p′α/β = 1− [li/(n(∆)− 1)]. The corresponding search cost is equal to:

X(i) = (li + 1)c2
Q. (11)
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(jj) The label α lies on the path from β to the root of the corresponding component tree with
probability p′α/β.
The path will be searched until the child of α is attained. As observed before, the label α
is uniformly distributed over the li nodes on the path from the root of the component tree
to β, and hence the position of its child on the path will be uniformly distributed over li nodes
(including β). The execution cost will be in this case:

Y (i) =
1

li

li
∑

j=1

j c2
Q =

li + 1

2
c2
Q, li > 0. (12)

By using (11) and (12) for cases (j) and (jj), respectively, we obtain the expression in (10).

4.2.2 The query R(x, β)

Proposition 8. The execution cost c2
R under the intermediate storage method is equal to:

c2
R =

C
∑

i=1

card(i)

n(∆)
(li + 1)c2

Q.

Proof: Immediate from case R(x, β) of algorithm 2.

4.2.3 The query R(x, y)

Proposition 9. The mean execution cost c0
R under the intermediate storage algorithm satisfies:

c0
R ∼ c0

Q + [n(∆)− 1](c2
R − c2

Q).

Proof: The proof of the proposition is immediately obtained from case R(x, y) of algorithm 2.

5 Average-case analysis

When one specializes the results of the previous section to particular classes of trees such as
full regular trees ([6], see also [2]) or chains ([6]), one sees that a great variability takes place
concerning the costs. For instance, we have c1

R = O(log n) for the full trees whereas c1
R is linear

in n for chains. It seems thus appropriate to study the behaviour of our algorithms on “most”
cases. This is what we do in this section, where we average the values of the execution costs of
the queries, over all the forests on a fixed number n of nodes.

5.1 The direct method

5.1.1 The query R(α, y)

Consider a labelled tree T with n+1 nodes and notice that there is a one to one correspondence
between the set of subtrees of T , except T itself, and the subtrees of the forest “pending” from
the neighbours of the root of T . Let f(n) (resp., g(n)) denote the average order of a subtree
of a random rooted tree on n nodes (resp., of a random oriented forest on n nodes of R(α, y)).
This correspondence implies clearly f(n + 1) = [n/(n + 1)]g(n) + 1. It is well known (see [4])
that f(n) ∼ (πn/2)1/2. Hence the average cost γ1

R for the query R(α, y) satisfies

γ1
R ∼ c1

Q

√

πn

2
.
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5.1.2 The query R(α, β)

We will need two results concerning the number g(n) of oriented forests on n nodes. Let us first
recall the following lemma, due to Rényi ([7]).

Lemma 1. Let 1 ≤ k ≤ n. Denote by F (n, k) the number of forests on V = {1, 2, . . . , n} which
have k components and in which the nodes 1, 2, . . . , k belong to distinct components. Then,
F (n, k) = knn−k−1.

Since in an oriented forest the roots of the components are arbitrary, we get g(n) =
∑n

k=1 g(n, k)
with g(n, k) = kCn

k nn−k−1. We have, for 1 ≤ k ≤ n− 1, g(n, k + 1)/g(n, k) = (n− k)/(kn).
It is easy to deduce from this the assertions g(n) ≤ enn−1 and

g(n) ∼ enn−1. (13)

Let us denote by m the size of the subtree T rooted at α and by V (T ) its node set; furthermore,
for each h ≥ 0, let us denote by mh the number of nodes of this subtree belonging to its hth
level. The total number of steps needed by the queries R(α, β) for β ∈ V (T ) is N(T ) =
∑

h≥1

(

mh+1
∑h

k=1 mk

)

= (1/2)[(m− 1)2 −∑

h≥1 m2
h].

We shall denote by Nn the mean value of N(T ) on the set of trees on n nodes. It follows from
known results on the moments of the sizes mh of the levels ([8]) that we have

Nn ∼
n2

2
. (14)

We will also need an estimate for the number f(n, l) of forests on n nodes in which the subtree
of a node with given label has order l. Let g(n) denote the number of oriented forests on n
nodes. Clearly, the number of distinct trees with a given root and l − 1 other nodes chosen
between n− 1 other given nodes is Cn−1

l−1 ll−2.
Now given such a tree T and a forest on the complementary set of nodes, we get a complete

forest (on n nodes) in exactly n − l + 1 ways, namely by linking the root of T to one node of
the given forest or by just adding the tree to the forest as a new component. Hence we have
f(n, l) = Cn−1

l−1 ll−2g(n− l)(n− l + 1).
We are now well prepared to derive an asymptotic equivalent to the mean cost γ12

R of the
query R(α, β). Let us set γ12

R = γ12
R,o + γ12

R,i, where γ12
R,o denotes the cost corresponding to the

case where β belongs to the tree of α and γ12
R,i the cost corresponding to the other case. We have

γ12
R,o =

1

g(n)
(c12

Q + c1
Q)

n
∑

l=2

(l − 1)f(n, l) (15)

γ12
R,i = c12

Q +
1

g(n)
(c12

Q + c1
Q)

n
∑

l=2

f(n, l)Nn. (16)

We shall prove that γ12
R,i = o(γ12

R,o).
We have, for q ≤ l ≤ n− q, using Stirling’s formula and (13),

f(n, l) = (1 + ǫ(q))e

√

n− 1

2π(l − 1)(n− l)

(n− 1)n−1

(l − 1)l−1(n− l)n−l
ll−2(n− l + 1)nn−1

= (1 + ǫ(q))e2(n− 1)n−1/2 1

l − 1

1
√

2π(l − 1)(n− l)
(17)
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where ǫ(q)→ 0 uniformly as q →∞. From expression (17) we have

n
∑

l=2

(l − 1)f(n, l) ≥ (1 + ǫ(q))e2(n− 1)n−1/2
n−q
∑

l=q

1
√

2π(l − 1)(n− l)

≥ (1 + ǫ′(q))πe2(n− 1)n−1/2 (18)

where the last inequality is obtained by approximating the left side sum by an integral.
Using, for l < q (resp., l > n− q), the inequality 1/[(l − 1)(n− l)]1/2 ≤ 1/(n− 1)1/2, we get

from (17) in the case where nq−2 →∞:

n
∑

l=2

(l − 1)f(n, l) ≤ e2(n− 1)n−1/2[(1 + ǫ(q))π +
2q√
n− 1

]

≤ (1 + ǫ′′(q))πe2(n− 1)n−1/2. (19)

Since ǫ′ and ǫ′′ are arbitrarily small for sufficiently big q it follows that we have

n
∑

l=2

(l − 1)f(n, l) ∼ πe2(n− 1)n−1/2 (20)

and, using (13), (15) and (20): γ12
R,o ∼ [1/(enn−1)](c12

Q + c1
Q)πe2(n− 1)n−1/2, or

γ12
R,o ∼ (c12

Q + c1
Q)π
√

n. (21)

Furthermore, by using (16), (17), (20), (21) and after some easy algebra, we deduce that γ12
R,i =

o(γ12
R,o).

So, (21) gives the asymptotic expression of γ12
R .

5.1.3 The query R(x, β)

Replacing in (8) c12
R by the value obtained for γ12

R , we get

γ2
R ∼ c2

Q + c0
Q + (n− 1)γ12

R .

5.1.4 The query R(x, y)

Replacing in (9) c1
R by the value obtained for γ1

R, we get

γ0
R ∼ c0

Q + (n− 1)γ1
R.

The following theorem sums up our results concerning the mean execution costs for the direct
method.

Theorem 1. The mean execution costs γ1
R, γ12

R , γ2
R and γ0

R of algorithm 1 for the queries
R(α, y), R(α, β), R(x, β) and R(x, y), respectively, where the mean is taken over all data base
relations represented by forests on n nodes and over all bindings of the variables, satisfy

γ1
R ∼ c1

Q(πn/2)1/2

γ12
R ∼ (c12

Q + c1
Q)πn1/2

γ2
R ∼ (c12

Q + c1
Q)πn3/2

γ0
R ∼ c1

Qπn3/2.
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5.2 Mean execution costs for the intermediate storage method

5.2.1 The query R(α, β)

It is easily seen as in section 5.1.2 that the main contribution to the mean cost comes from the
case where β does not belong to the subtree rooted at α. Thus, since in this case, according to
section 4.2.1, the query amounts to search the path from β to the root of its tree, the mean cost
verifies

γ12
R ∼

√

πn

2
c2
Q.

5.2.2 The query R(x, β)

Recall that the solutions here are all the nodes on the path from β to the root of its tree. Thus
we have similarly as above

γ2
R ∼

√

πn

2
c2
Q.

5.2.3 The query R(x, y)

Replacing the quantities c0
R and c2

R in proposition 9 by their averages, we get

γ0
R ∼ c0

Q + (n− 1)(γ2
R − c2

Q).

The following theorem sums up the results concerning the intermediate storage method.

Theorem 2. With algorithm 2, the mean execution costs γ12
R , γ2

R and γ0
R for the considered

queries R(α, β), R(x, β) and R(x, y), respectively, where the mean is taken over all data base
relations represented by oriented forests on n nodes and over all bindings of the variables, satisfy

γ12
R ∼ (πn/2)1/2c2

Q

γ2
R ∼ (πn/2)1/2c2

Q

γ0
R ∼ (π/2)1/2n3/2c2

Q.

It is seen that the intermediate storage method brings in the case of the query R(x, β) a con-
siderable improvement over the direct method.

6 Conclusions

We have presented an average-case complexity analysis of two simple and natural algorithms
performing the evaluation of the transitive closure. Both methods are proven to be quite efficient
when they operate on relations represented by labelled oriented trees, or forests of labelled
oriented trees.

The complexity of each algorithm has been studied in two cases: for any given forest structure
we have obtained expressions for the execution cost of the most usual queries; our results are
derived, in this case, using a notion of equivalent nodes which is very natural and leads to
significant simplifications in the analysis; next, we have derived expressions for the mean costs,
the mean being taken over all the possible forest structures with a fixed number of nodes.
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At a first level, our approach has provided a formalism for describing the underlying structure
mainly based on the notion of equivalent nodes and then has allowed us to obtain expressions
for the complexity of the algorithms by averaging over all possible queries on a given database
structure. At a second level, average-case results have been obtained by taking into account all
possible structures with a given number of nodes. The first level can be used to characterize
any given situation but requires a rather detailed representation of the structure. The second
level allows an abstract characterization which uses no representation at all and leads to simpler
expressions.

Let us point out that our strategy and analysis can be used for most of the evaluation
methods appearing in [2].

Finally, a very interesting extension of this work is the study of the average-case complexity
of algorithms 1 and 2 whenever the EDB relation Q is represented by means of a directed acyclic
graph.
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[7] A. Rényi, Some remarks on the theory of trees, Publ. Math. Inst. Hungar. Acad. Sci. 4,
pp. 73-85, 1959.

[8] V. E. Stepanov, On the distribution of the number of vertices in strata of a random tree,
Th. Prob. Appl. 14(1), pp. 65-78, 1969.

[9] J. D. Ullman, Principles of database and knowledge-base systems (vols I and II), Computer
Science Press, 1988.

[10] J. S. Vitter and Ph. Flajolet, Average-case analysis of algorithms and data structures, in
Handbook of theoretical computer science (vol. A), pp. 431-525, J. V. Leeuwen ed., Elsevier,
1990.

13


