Corporate Social Responsibility before CSR
Practices at the Company Aluminium du Cameroun, 1950s-1970s

Marie-Claire Loison
Anne Pezet
Céline Berrier
Université Paris-Dauphine, DRM

Abstract
Corporate social responsibility (CSR) is a relatively recent phenomenon for companies and their stakeholders. However, we cannot ignore its historical roots. Many companies, especially in industry, developed social and environmental policies and practices a long time ago. These practical and historical dimensions still remain absent from the academic literature on CSR. In this paper, we set out to study a case over an extended period—from 1950s until 1970s—in order to understand how manufacturers took into account the various economic, social and environmental aspects of their activity, when they made an investment and subsequently ran an aluminium production site. The case of the company Alucam, implanted in Cameroon, shows how manufacturers integrated the Triple Bottom Line well before the ‘invention’ of CSR. Since its creation in 1957, this plant designed to produce primary aluminium has systematically applied a policy that simultaneously integrated the economic, environmental and social impacts of its activity. However, such visible permanency masks important changes in the way that CSR has been applied over time. This case study provides a better understanding of the process of building CSR in the aluminium industry. With that goal in mind, our methodology is historical. Research was mainly carried out by means of studying the Alucam archives. Such empirical research, highlighting the reality of the practices implemented in companies, constitutes an original contribution to the history of CSR.

Keywords: Corporate Social Responsibility, paternalism, development, environment, history, case study.

1 Corresponding author: anne.pezet@dauphine.fr
The term Corporate Social Responsibility (CSR) has only relatively recently been introduced into the language of the business world. Yet, academic literature on management shows that taking social and environmental concerns into account does not constitute a new phenomenon for companies and their stakeholders, at least since Bowen (1953). At the theoretical level, it should be accepted and recognized that CSR has historical roots. In fact, CSR constitutes one of the earliest key conceptions in the academic study of relations between business and society. And yet, although the historical anchoring of CSR is recognized at the theoretical level, it has given rise to very little empirical research highlighting the reality of policies and practices of social responsibility as it is adopted and applied in companies. It is unfortunate that practical and historical dimensions still remain absent from the academic literature on CSR.

The main reason can be found in the methodological pitfalls that this kind of research raises. Indeed, the terminology held in the acronym CSR is of relatively recent brushwork. Yet, studying the actions and motives of managers in the past reveals that neither social nor environmental concerns were ignored. Moreover, these concerns formed part of a broader thinking that included more obvious economic and financial criteria. From a methodological point of view, in light of the fact that CSR did not exist during the period studied, we looked at motives, especially those unrelated to a company’s own economic and financial interests. We noticed in previous studies (Pezet, 2000) that economic and financial interests were not the sole purpose of investment decisions. We therefore chose to study Alucam because of its location—Africa, a continent supposedly more affected by new issues such as social and environmental questions. Other studies have shown that companies are bound to implement innovative practices when confronted with entirely new situations (Moquet, Pezet, 2006; Pezet, 2000). We set out to look for all sorts of motives, other than profit motives, in the archives. Indeed, this research was mainly carried out by means of studying the Alucam archives. In addition to this work on the archives, we used studies and academic research as well as oral and written testimonies made available by the IHA. Finally, we also mobilized other public archives and sources to triangulate our data.

Another methodological difficulty stems from periodisation. Periodising is problematic here, given that these different aspects mostly occur simultaneously—the very premise that underpins our assumption that we are dealing with an early example of CSR. However, it seems that the primary concern for all actors was economic, i.e. concern for both Pechiney’s

2 The Institute for the History of Aluminium (IHA) was founded in 1986. It has three main missions: protecting the aluminium industry's heritage; the multidisciplinary study of the history of aluminium in its technical, economic, industrial, commercial and cultural aspects; and finally, the promotion of that work.
own interests and for the prospects of Cameroon’s and Africa’s development. The second concern was for people: social policy (salaries, health and accident insurance, social security benefits, etc.), improvements in living conditions, recruitment, education and training, and, ultimately, the ‘Cameroonisation’ of the staff. The final, and initially rather neglected, concern was for the environment. In this Alucam case study, we present the different components of CSR in this order of appearance (without forgetting, however, that they often overlapped)—economic, social and environmental aspects.

In this context, it seems relevant to undertake a historical analysis of CSR strategies and practices before the concept of CSR arose in Europe during the 1990s. Indeed, many companies, especially in industry, developed social and environmental policies and practices much earlier on. In this paper, we set out to study a case over a period in the past, from the 1950s to the 1970s, in order to understand how manufacturers took into account the various economic, social and environmental aspects of their activity, at a time when CSR did not yet exist.

The aluminium industry was, at an early stage, confronted with both globalization and societal issues (Loison, Pezet 2006; Grinberg, Pezet, 2006). Indeed, the context of international investment was favourable to the conception and implementation of strategies, which, beyond economic interest, contained social and environmental dimensions. Aluminium du Cameroun (Alucam) was created in 1957 as a subsidiary of the French group Pechiney\(^3\). Since its creation, this primary aluminium producing plant has systematically applied a policy that simultaneously integrated economic, environmental and social facets.

When Pechiney began its activity in Edéa (Cameroon), the company was not entirely a novice in matters of major investments abroad (Beau, Danjou and David 1975; Cailluet 1995). Even though some of them were aborted, Pechiney’s experiences in the United States and Norway in the 1910s, and in Italy, Spain and the USSR in the inter-war period, bear witness to this. Yet the Edéa site (and its contemporary, Fria, in Guinea) posed new problems for Pechiney and raised new doubts, particularly in relation to the country's colonial and postcolonial history. In French Cameroun, Pechiney set up in unknown territory. It was the French firm’s first international investment in Africa. It was also the very first industrial investment of this scale in sub-Saharan Africa. Yet, it took place in a colonial territory administered by French institutions and people\(^4\).

\(^3\) Pechiney is now part of the Rio Tinto–Alcan Group.
\(^4\) (French) Cameroun achieved independence in 1958. After a number of changes to both its territory and constitution since independence, its official name in English today is the Republic of Cameroon. We use both spellings here to indicate periods before and after independence from the French Empire.
The company’s interest in setting up this plant was two-fold. Firstly, following World War II, Pechiney had great difficulties in maintaining a strong position faced with competition from the North American giants (Alcoa and Alcan). In this light, Africa represented an opportunity in terms of energy and mining resources. French Cameroun, notably, offered sizeable hydroelectric capacity, which was indispensable to Pechiney after the nationalization of the French electric company Electricité de France (EDF) in 1946. Secondly, French colonial policy during this period shifted towards the idea of a fairer exchange that would enable the development of territories and not simply their exploitation. Incentive policies were drawn up backed by financial aid and tax incentives provided by various national and international institutions (such as the Ministère de la France d’Outre-Mer and the United Nations, for instance). The economic, social and human development of Africa as well as its industrialization was part of the arguments used to promote the project to build a primary aluminium smelter and several processing facilities in Cameroun.

Despite the impact of these economic, social and human arguments in favour of implanting an aluminium production site in Cameroun, and in Africa more broadly, the project faced various opposition movements by its stakeholders (local small firms, anti-colonialist movements, etc.). The project’s negotiation phase, which brought together the company, the French and Camerounian authorities and opponents of the scheme, provided Pechiney with the first opportunity to draw up and put into practice a policy that combined economic, social and, to a lesser degree, environmental dimensions of the project.

The way in which a company responds to economic, social and environmental issues is indicative of its social responsibility. Though these issues were hardly unknown at the time, they took on a whole new dimension in Africa and for this reason it was vital that investment in French Cameroun should be both responsible and sustainable. We assess these issues here under three headings, by order of appearance: economic issues, human and social issues, and environmental issues. However, we first outline the existing literature on CSR from a historical perspective and the general historical context of other-than-profit motives in the aluminium industry before Alucam.

CSR from a historical viewpoint: literature review

From an overview of the literature on CSR—which has been abundantly documented and commented on—we can outline the following series of stages: the Friedmanian conception (1962) of the maximisation of profit alone for the benefit of shareholders broadly dominated

The production of aluminium depends on two strategic factors: electricity and bauxite (which, in this case, came from Guinea).
thinking; it removed all other concerns for a corporation. And yet in 1953, Bowen began thinking about CSR as a way of integrating the values sought by society beyond shareholders’ economic interests. Carroll (1979) developed the concept further by suggesting the Triple Bottom Line. In 1985, Cochran and Wartick expanded the concept of CSR by introducing principles of responsibility to give it structure. Finally, Wood (1991) established the links between CSR, its implementation and its impact on corporate behaviour. Over time, a consensus defined CSR as a response to the need to maximize a company’s goals through profitability for the benefit of the shareholder but also for the benefit of its other stakeholders (Freeman, 1984). Hence, the company’s pursuit of three objectives: honouring its obligations to stakeholders, responding to social demands arising from the socio-economic environment, and using CSR as a management tool. However, the structuring of the concept borrows heavily, simultaneously, and sometimes in a contradictory manner, from a variety of different schools of thought, including ethical-religious, ecological, and both libertarian and interventionist thinking. Lastly, the lack of a unifying paradigm is patently obvious. What is also striking from this literature review is the lack of truly empirical work on CSR.
Table 1 – Summary of the theoretical literature on CSR

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Social Responsibility (CSR1)</td>
<td>Corporate Social Responsiveness (CSR 2)</td>
<td>Corporate Social Rectitude (CSR 3)</td>
<td>Business Ethics</td>
<td>Corporate Social Performance (CSP)</td>
<td>Corporate Citizenship</td>
</tr>
<tr>
<td>Socially Responsible Investment SRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Approach</td>
<td>Ethical</td>
<td>Managerial</td>
<td>Ethical</td>
<td>Managerial</td>
<td>Integrating</td>
</tr>
<tr>
<td>Areas of application and motivations of CSR</td>
<td>Corporate modes of responding to social pressures</td>
<td>Forms, outcomes and consequences of CSR policies</td>
<td>Moral and ethical dimension of CSR</td>
<td>Moral values as a benchmark for responsible behaviour</td>
<td>The company as a social actor in its own right</td>
</tr>
<tr>
<td>Justification of CSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Themes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wood (1991)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Swanson (1995, 1999)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clarkson (1995)</td>
<td></td>
</tr>
</tbody>
</table>

Source: Loison (2009)

The background of the concept may be more or less known, at least as far as we can tell. Yet the history of its practices remains to be told, since such practices certainly date back to before 1953 (Bowen). In fact, some studies do exist that call into question a number of commonly held assumptions. Environmental issues were a precocious concern in our societies, especially with the growth of cities and the rise of industry (Thorsheim, 2006; Schott, Luckin, Massard-Guilbaud, 2005; Tarr, 2005, 1998; Bernhardt, Massard-Guibaud, 2002). Tarr (1998) develops a conceptual framework in which urban pollution flows from the interaction between technology and scientific knowledge, culture and social values and finally, the environment, including environmental policy and its control devices. Seen in such a light, decrees, police orders or acts of parliament (for instance, Napoleon Bonaparte’s 1810
decree in France) soon appear no different to today’s pressure groups, occurring as they often did in a political and intellectual context in which belief in improving public hygiene, not to say in eugenics, was growing. Ultimately, the issue of the environment become strongly tied to the question of political order (or disorder) (Bernhardt, Massard-Guibaud, 2002). A healthy environment was thus considered to be a guarantee of political order.

However, it is historical research into environmental and, to a lesser extent, social practices that interests us here. We touch upon a few examples here, chosen for their relevance to the Alucam case study. The aim of these scholars (Meisner Rosen, Tarr, and Uekoetter in particular) was firstly to position environmental history in relation to the classical history of corporations. Ultimately, such a project calls into question the Chandler’s paradigm, because issues such as industrial pollution and the ensuing conflict between corporations and environmental movements challenge the Chandlerian vision of vertical integration. Top management were found to be unable to ignore issues of pollution in their decision making. As Meisner Rosen (1997, 1999) shows is, managers were confronted with problems of pollution at an early stage. Whether or not they sought to reduce pollution, they were undeniably aware of its existence. Meisner Rosen (1997) thus highlights the link between environmental issues and the growth of R&D in the building sector. She specifies three decisive factors in studying problems of pollution from a historical viewpoint: technology, the role played by the market, and the role played by the State, which influences the interactions between business and the environment (Meisner Rosen, 1999). Ecological protest movements have also played a major role in getting corporations to change (Meisner Rosen, 1997; Uekoetter, 1999). From these diverse observations two main streams emerge: firstly, the issue of the environment, which is a history of pollution; and secondly, the issue of social responsibility.

Environmental issues have been the focus of a large number of studies centring on two perspectives: the impact of legislation, and corporate initiatives. The work of Lindmark and Bergquist (2008) analyses the very heavy positive influence of environmental legislation on steelmakers in Sweden and Canada during the 1960s. Reaching further back in time, Meisner Rosen (2003) examines the way in which legislation worked towards repairing the environmental damage inflicted on local communities living near heavy industry during the first Industrial Revolution.

The second perspective has focused on the reactions of companies faced with environmental issues. Stradling and Tarr (1999) study the strategies of the railroad industry in Chicago when it faced problems of air pollution in the 19th century. This work ascertains that the
Pennsylvania Railroad reacted to public protests by transforming them into internal problematics designed to change behaviours. In the end, the company electrified its railroads. Uekoetter (1999) compares the behaviours of German and American senior managers when compelled to tackle air pollution in the period from 1880 to 1917. Noting that historical studies on the subject converge on the idea that entrepreneurs are systematically remiss in their efforts towards the environment, Uekoetter instead examines how economic and financial interests can sometimes fall in line with environmental issues. He therefore rails against the commonly held assumption that views the industrial world as systematically being a “negative force”.

Meisner Rosen (1995) sets out from the same premise: companies act because the costs pertaining to pollution—notably medical and economic costs (black smoke stains, damage to buildings, machines and even clothing)—are simply too high. In response to these problems, certain industrialists belonging to Chicago’s high society established a ‘Society’ that embodied values close to those of CSR. This experiment ended in failure due, notably, to the opposition of less affluent employers as well as to accusations of corruption that robbed the Society of all legitimacy.

Legislation and managerial actions can also complement each other. Gorman (1999) focuses on the production of brine during the extraction process of crude oil in the southern states of the United States between 1920 and 1970. This salt water generally ended up in fresh water reservoirs. The scholar describes how efforts by the public authorities in close collaboration with the companies to regulate this practice led these same companies to innovate in order to reduce the salinisation of the drinking water.

The history of social responsibility practices is less developed than environmental history. Yet some research tackles this history from various angles without claiming to define elements of general knowledge. Nevertheless, it suggests strong interest in issues of responsibility dating back as far as the end of the 19th century. Ethics and religion were powerful drivers at that time. As Max Weber (1967) has shown, Protestantism played a founding role in the emergence and propagation of capitalism. The consequence of this was that managers took on a degree of social responsibility (the precursor of CSR). This was expressed in their discourse on developing philanthropic activities (Acquier, Gond and Igalens, 2005). Philanthropy epitomised the American model until the 1950s (Marinetto, 1999). It combined with the development of management methods in big firms. Using the example of the tobacco industry pre-1939, Fitzgerald and Hirao (2005) show how British managers associated their
philanthropic actions with a certain way of managing employees (sick-pay policies for the sick, for instance), with standardising procedures, and with certain accounting practices. Social and environmental accounting has even been the subject of specific research that shows that its emergence goes back much further—to some time between the late 19th and early 20th centuries—than is widely believed (Maltby, 2005, 2004; Unerman, 2003; Gallhofer, Haslam, 1993; Guthrie & Parker, 1989; Lewis, Parker & Sutcliffe, 1984; Hogner, 1982). More broadly, but with a link to both accounting and accountability, Salomon and Thomson (2009) describe how, as far back as the mid-19th century, the engineer Frederick Braithwaite became aware of pollution in the Wandle River between Croydon and the Thames. They show how his ‘account’ exposed and problematized business practices in Victorian society. In a similar vein, Solomon and Thompson (2007) reveal the intellectual workings of environmental concerns in their study of William Morris.

All of these studies, of which our review here is by no means exhaustive, show that environmental and social concerns are not a recent occurrence in corporate history. Our own case study of the aluminium industry also shows this to be true.

The context in which social and environmental issues emerged in the aluminium industry in general and in Cameroun in particular

From the outset of its industrialisation in the late-19th century, the aluminium sector had to take into account the social and environmental aspects tied to its production (Smith, 1988). The French producer Pechiney was no exception to this rule (Menegoz, 1997, 1991). From this viewpoint, the “conquest” of Africa was a one-off opportunity to apply new principles, given the unusual context in which it occurred that raised questions about the well established customs common to French colonial territories at that time.

The French aluminium industry was soon confronted with issues other than economic and financial

Before dealing with the practices of Pechiney in French Cameroun, a brief overview is needed to situate the issues at play. Historically, the aluminium sector, much like other industries, has been confronted with social issues. Indeed, the specific activities involved in producing and processing aluminium compelled companies in the sector to develop, both in France and abroad, a highly advanced social policy at a very early stage. Implementation of social practices from the late-19th century onwards was mainly a response to necessities of a technical and economic nature specific to steel-making industries. Implanting factories close
to sources supplying water and raw materials led to significant geographical isolation bringing about the marked autonomy of remote production sites.

In such a context, a company needed to offer its workforce living conditions that compensated firstly for the distance from urban areas and secondly for the tough working conditions in order to attract and mobilise, and then to stabilise and consolidate its manpower. With this goal in mind, companies generally did not limit themselves simply to satisfying their workers’ material living conditions (housing, basic hygiene, health and safety, etc.); in addition, social works that provided social protection (family benefits, pensions, etc.) and responded to the needs of families, including schooling, training, cultural, religious and leisure pursuits supplemented the panoply of services provided by industrialists in the sector. Truly autonomous cities sprouted up around the plants, creating discrete communities. On this point, Bourguinat (1989) highlights “the role of the factory’s social regulator” with regard to the Pechinéy factory at Saint-Jean-de-Maurienne in France in the early 1920s:

“Little by little, the various plants were compelled to build around themselves a small core of personnel, a micro-society in which the social security provided by accident insurance and family benefits paid by the company formed part of a social policy founded first and foremost on housing. The trade-off for this loss of individual autonomy was earning regular income—albeit modest—as well as valuable perks and services.” (Bourguinat, 1989)

These social practices first emerged in the companies’ national territories and were subsequently adapted for export abroad during the growing internationalisation of the sector in the second half of the 20th century. The nature of the tools of social policy obviously evolved over time according to the social problematics faced by the factories, companies and groups in the sector. Broadly speaking, the social history of the big industrial groups in aluminium has its roots in the paternalist practices implemented, first of all, in plants on a local scale and then, more generally, at the level of whole companies and groups, including abroad6. Indeed, traces of this original paternalist policy can still be found in the contemporary social practices of multinationals in the sector. Moreover, at its outset, the social policy was strongly imbued with the technician values typical of the engineering culture that characterises the aluminium industry and according to which “the technical dictates to the social” (Vindt, 2006, p. 11).

6 We do not broach the debate here on the relationship between paternalism and CSR. History appears to show that the two types of practice are genealogically linked.
From its inception, social policy mainly pertained to relations between the company and its employees and their families. Subsequently, social concerns gradually shifted from relations with the workforce towards relations with society as a whole. The company became a genuine social actor that had to act in compliance with the expectations and values of wider society and no longer solely with those of the local community in which the plant was located. This change of perspective required an expansion of the social practices implemented by companies without neglecting relations with the workforce, which remained at the heart of corporate social policy and was progressively institutionalised.

Aside from its social policy, the aluminium sector also needed to develop environmental practices rapidly. The aluminium industry generated high levels of pollution and was the source of large amounts of environmental damage (air, water, ground, etc.) and of various nuisances that are more or less dangerous to local populations living near its plants (fumes, odours, dust, etc.). Such pollution equally caused harmful repercussions for cattle breeding and agriculture in regions in which electrometallurgical factories were located. Under these conditions, the industry very quickly found itself compelled to provide concrete solutions in response to the demands and criticisms, even the accusations and complaints, from populations living in their vicinity.

Similar to the social dimension, the environmental dimension has been one of the strategic challenges faced by the aluminium industry since its beginnings. However, unlike the permanence of its social policy, implementing practices designed to tackle the impact of corporate activities on the environment derives from a fairly uneven and painfully slow process. Above and beyond the use of palliative-type tools until the mid-20th century, the development of a truly environmental policy proved to be relatively late in coming in light of the precocious nature of demands made by this industry’s stakeholders regarding environmental issues.

Accordingly, environmental concerns have often struggled to impose themselves in this sector that, for a long time, has denied many of the nuisances and downplayed their consequences in favour of promoting the advantages created in terms of jobs and benefits for the local economies:

“In this area, the Pechiney men have not been ahead of their times. Aside from a few pioneers, industrial firms only became truly aware of environmental problems in the 1970s. For engineers working in aluminium and alumina, their first thoughts were of technique and production. At that time, people refused to talk about pollution because at
the general idea was to say: ‘there’s no pollution’. People refused to see things as they really were.” (Grinberg and Mioche, 1996, p.194)

However, one significant point of friction—fluorine emissions—soon emerged as a genuine obstacle to implanting aluminium production sites in a peaceful manner:

“A Swiss Federal report published in 1893 mentions an aluminium factory, threatened with closure due to nuisances, which installed a tower in which air from the potline was cleaned by pulverising water. Aluminium production clearly did not have a good reputation and, during the public planning inquiry for building Saussaz in 1905 [an aluminium plant at Maurienne in the Alps], local farmers demanded that ‘the dust and the smoke be captured’.” (Ménégoz in Morel, 1992, p.140)

Some projects, especially those relating to opening plants or using new turbine water channels required to produce electricity were thus the focus of loud protests, even genuine opposition campaigns, from the local communities concerned. In 1924, a project by Pechiney to build turbine water channels at Drac Inférieur (in the Alps) was abandoned due to protests relating to smoke emissions from an aluminium factory close to a large town, in this case Grenoble. Likewise, in 1933, the Pechiney factory at Sabart (in the Pyrenees) was subject to complaints about damage to crops, which led to an inquiry by the local Préfecture on the request from the Ministère de la santé publique.

Faced with such problems and demands of a mainly environmental nature, for a long time French industrialists adopted a technique stance in relation to what was perceived as a technical problem, whenever it was not being denied. The first responses to environmental issues resorted to adopting in a limited manner less polluting processes and clean-up systems and, in particular, to providing financial compensation.

The main device used by industrialists regarding environmental issues was to pay for reparations for any damage caused as well as paying damages to the victims. Thus, in 1924, the board of directors of the company Alais, Froges et Camargue7 discussed the affair of the Cardon fish (in Gard in the south of France):

“At certain times in the year, under controlled conditions, we emit into the Avène, a tributary of the Cardon, at Salindres the residual water from the factory. This year, this operation has caused the death of a certain number of fish, for which the Ministère had prepared a transaction to the amount of 400 Frs. The Préfet of the Gard has just decided

7 Precursor of Pechiney.
to halt the transaction and to bring the question before the Conseil Général, which has ruled that the Département should lodge a complaint against the Company”.

Above and beyond financial compensation, the group’s factories were sometimes led, whether voluntarily or otherwise, to improve their production systems using less polluting equipment. In France, one effort of this type was the implementation of a system to capture gas emissions at the Pechiney factory at Saussaz (Alps) in 1905 in order to reduce fluorine emissions following complaints from local residents and farmers (Grinberg, 2003, p.46). In 1934, in order to improve the cleaning of smoke emissions, the Pechiney factory at Sabart (Pyrenees) installed a system of electrostatic filtering onto the stack of the pulverised coal furnace. The favourable results led to a similar project to install a filter on the tunnel furnace. The Board announced on this point: “it was a matter of significant expenditure imposed by the new legislation, but from which we will draw some benefit due to reductions in indemnities for damages to agriculture that we are currently compelled to pay to neighbouring landowners”.

In this case, we note that financial motives converged with action for the environment, which remained in effect regardless. Finally, the group sometimes carried out environmental initiatives in fields other than its own industrial activity, such as financing a project to set up a National Park in the Camargue from 1928 onwards.

However, until the mid-20th century, experimental techniques for collecting and processing smoke emissions remained ineffective in reducing pollution. Paying damages therefore constituted the most suitable practice, from the industrialists’ viewpoint, for dealing with growing protests from local residents. Thus, until the 1960s, companies in the sector clearly positioned themselves in an adaptive, even defensive, posture in reaction to the demands and protests of their stakeholders. For a long time, corporate environmental practices remained reactive and driven by either pressure from stakeholders or legislation.

Generally, the solutions adopted were limited to curative actions and time-bound investments mainly designed to modify existing installations in order to reduce pollution upstream of production processes (Boiral, 1998, p. 2). Voluntary action remained uncommon and was generally situated outside the field of the company’s economic activity. The practices implemented seemed to be aimed primarily at complying with legislation or at silencing critics in order to enable economic activity to continue and develop under normal conditions. This pressure constituted the main constraint that could compromise the social legitimacy of a company’s activities and its ultimate survival. At that time, there was no real environmental awareness to be found in this industry. We are still far from CSR practices per se.
Ultimately, these devices proved to be both ineffective in reducing environmental damage and very costly for companies. Companies were therefore gradually led to integrate environmental concerns in the design phase of their production processes. According to Boiral (1998, p. 2), “developing preventative approaches responded to the need to find new alternatives to offset increases in the cost of clean-ups and the limitations of palliative-type actions”. Moreover, from 1950 onwards, the rise of ecological movements as well as the application of more demanding environmental regulations compelled industrialists systematically to seek out effective technical solutions to fight against pollution. However, it was not until the early 1970s that an effective system of capturing emissions was developed in France. Such evidence does show that actions carried out by the industry, either voluntarily or by force, to limit the impact of its activity on the natural and social environment dates back a long way. Broadly speaking, these responses characterise the attitude of an industry that, until the 1980s, remained strongly attached to its technician values. This relationship between technique and the environment did not pertain to the aluminium sector alone; it represented a broad trend for all companies until the mid-1980s:

“One undoubtedly essential issue resides in the shift in the highly complex relationship between the environment and technique (…) Research and development on clean techniques, for instance, contributed to the fact that the environment, as both a concept and a concern, navigated with relative ease around the rocks of the economic crisis when this crisis deepened at the end of the 1970s and early 80s. Yet more important was that technique began to allow companies to take back some of the ground that it appeared to have lost. The technical dimension enabled them to reposition themselves discretely in the area of the environment” (Boulet, 1999, p.339).

The Alucam case study ascribes relatively well to these practices, which are old yet intermittent, and which spanned social issues that were continuously addressed and environmental issues that elicited greater reluctance, even out-right denial.

The “conquest” of Africa by Pechiney: States and Men

The context of implantation in Cameroun is closely tied to the colonial history of France in Africa, to Pechiney’s history and, ultimately, to the men—given the total absence of women—involved in the operation. Within the framework of this paper, it is impossible to
provide a detailed panorama of all these different aspects; here, we set out to outline several basic features. France built its colonial ideology on the premise that its civilisation was superior to those of other peoples. The ideas developed by Le Bon, Spencer and Darwin, which were often taken out of context and distorted, provided the intellectual layer of this ideology. As Schuerkens (2008, p. 1) points out:

“In its ideal form, [this ideology] resembles the colonial policy of England. Improving the material and social conditions for the indigenous people became the main goal. Nevertheless, the French had to develop [the indigenous people] in such a manner that they kept their positions, functions and roles in their own cultural systems. Respect for their traditions and their customs would serve to achieve these goals. Carrying out this policy of association required in-depth knowledge of the local populations, which could only be achieved through prolonged contact. It was in this way that this policy would ensure reconciliation between the rights of the victors and the interests of indigenous populations, the vanquished…”.

Girardet noted that colonial France was built not on a single theory, like that of Lord Lugard in England, but “on a broader system (...) of prejudices, beliefs and mental habits, tied to the very deep and more or less unanimously held conviction of the obvious primacy of European civilisation, in truth the only Civilisation, in relation to all other human societies” (Girardet, 1972, p. 89). The French colonial policy was paradoxically deeply pragmatic, leaving actors in situ free to act according to their own analysis of the situation (Schuerkens, 2008). This policy left the door open to abuses, which are amply described elsewhere. The only guiding principle was to impose the model of French civilisation because of its obvious superiority. The Alucam project was carried out at the time of decolonisation, i.e. when these old principles and premises of the French Empire were being called into question and were widely misunderstood. World War II undermined the position of mainland France and raised the issue of maintaining French domination in a colonial Empire that reached its peak in the late-1930s. Dragged down by the weak and unstable parliamentary regime of the IVe République, France did not take note of the rise of emancipation movements of indigenous peoples in its colonies. Unlike the United Kingdom, France did not have any experience with decolonisation. The French maintained the illusion that minor accommodations would suffice

8 For a broader history, see Laparra, Grinberg (2007).
9 Bertrand Tavernier’s film, Coup de torchon, released in 1981, paints a vitriolic portrait of French colonists in Africa.
to maintain their hold over the Empire. Until 1958, they would be carried along by events over which they had less and less control.

However, from 1956 onwards, the decolonisation of sub-Saharan Africa was carried out in a peaceful manner, unlike the decolonisation of both Algeria and Indochina. The Deferre framework law, passed in 1956 by Guy Mollet’s socialist government, granted relatively broad autonomy to the African Territories, which could now elect a local Assemblée with the power to appoint a governing Council with a Vice President who, by law, had to be an African. Back in power in 1958, Charles de Gaulle pursued this policy by proposing that Overseas Territories become members of a French Community, chaired by himself, to prepare the way towards independence. In African, only Sekou-Touré’s Guinea rejected this proposal and immediately declared independence. The other Territories of sub-Saharan Africa and Madagascar became members of the Community before achieving independence themselves in 1960.

Pechiney’s implantation in Cameroun occurred during this key period. Relations with the new power in Cameroon remained stable and the violence that swept Cameroon, particularly during the “bloody week” in May 1955, did not affect the construction site (Abwa, 2007). The conflict opposing President Ahidjo and “subversives” (represented by the Union of the Peoples of Cameroon) seemed to attract the attention of the powerful far more than Alucam. Negotiations to protect Pechiney’s stake in the plant—unlike events in Guinea, see below—began before Ahidjo came to power and continued afterwards. Pechiney’s men, backed by the French government, were particularly attentive to maintaining good relations with the new State.

In this respect, the men chosen were of particular importance. Pechiney therefore mobilised:

- “Men of aluminium”: engineers by training, Jean Matter and Jean Grolée began their careers at Pechiney before the War. They knew the sector’s techniques and economy perfectly;
- Men of construction and of electricity: the engineer Paul Guinet;
- Functional managers: Jacques Ribadeau-Dumas, head of social affairs and subsequently head of African affairs at Pechiney, and Jacques Henry, who followed him into African affairs;
- Politicians: Jacques Marchandise, civil servant and government advisor;
- The visionary: Marc-Edmond Morgaut, psychologist and author of books and research on Africa.
We will pause for a moment on this last personality, who is less known than the others in the history of aluminium. His experiences in Guinea acted as a benchmark for Alucam. Marc-Edmond Morgaut was the first to apply psycho-technical tests in Guinea for all ethnic groups without discrimination. There, he put in place in 1959 a four-year plan designed (1) to foster training and education, because he thought that technical training cannot take place with its “educational complement”; (2) to promote the idea that “among the 800 Africans in jobs, none should be refused an opportunity”, by means of implementing a system of study contracts identical to those developed in the People’s Republic of China; and, (3) to promote Africanisation (Larrue, 1997, pp 161). Morgaut commented that the decision to send Europeans overseas should take into account their personalities more than their qualifications or even their experiences abroad. Pechiney should recruit people who are curious about the civilisation they are to encounter and careful to develop mutual understanding and dialogue (Larue, 1997, pp 258). He was also the author of Un Dialogue Nouveau : L’Afrique Et L’Industrie, published by Fayard in 1959, of L’Homme Et La Creation... Et Si, Demain Dieu S’Avisait De Refaire L’Univers, published by Masson (1991) and of “Cinq années de psychologies africaines”, a paper appearing in the journal Tiers Monde in 1964. Morgaut therefore played a major role in implementing innovative practices well before CSR.

Having presented the general outline of the context, we now set out the Alucam case study in its various aspects, in chronological order of their appearance and without forgetting that they often overlap: economic issues (from the project’s financial profitability to its impact on development in Cameroon and Africa), social issues, and environmental issues.

Economic issues that go beyond corporate profit

The economic aspect of Alucam’s investment was truly original. Beyond the financial profits expected from the project, Pechiney planned to make a contribution to the development of Cameroon and Africa. This determination was reinforced by the decolonisation going on at the time. French colonial policy was moving towards the idea of a fairer balance, in which it would be possible to develop, and not just to exploit, the countries it occupied. The economic, social and human development of Africa, as well as its industrialisation, has always been among the arguments associated with Alucam, both at the time of the plant’s creation and throughout its operation.
Pechiney’s strategic and financial expectations

Africa was for many years a territory envied by aluminium industrialists; its resources of both energy and bauxite elicited much speculation. When Pechiney finally launched a project specific to Cameroun, the usual strategic (competition, access to resources, technology) and financial motives were mobilised in a context that also presented some new challenges.

Aluminium and Africa: an old and complex history

Alais, Froges et Camargue (AFC), the precursor of Pechiney, was interested in Africa at an early stage. The French producer was not the only one to have identified the continent’s resources: competitors, such as the French Ugine, Canadian Alcan, British Baco, and the American firms Alcoa and Olin Mathieson; producers of electricity (EDF); but also the American and French governments and, in particular the Ministère de la France d’outre-mer and its local representatives, saw great investment opportunities. The bauxite in Guinea and the potential for energy generation in French Cameroun sharpened their appetites. Africa, the essentially colonial land, was the subject of speculation of all sorts, from both corporations and States.

Map n°1 – Colonial Africa in the 20th Century

Source: users.erols.com
In 1921, the Compagnie des bauxites du Midi, which belonged to Alcan, acquired concessions in the Guinean islands of Loos. In 1942, AFC was endowed with an African affairs department and sent a mission to Guinea, with the backing of the Vichy government seeking to maintain control over its Empire, whose goal was to study the availability of bauxite and energy. Elsewhere, the energy potential of French Cameroun attracted the attention of the French. In 1946 and 1947, the nationalised company Electricité de France (EDF) carried out studies into hydroelectric installations in French Cameroun and set up the public-private partnership, Energie électrique du Cameroun (Enelcam). The projects moved forward quickly and, in 1947, a mission led by Pechiney returned to Africa and identified several sites for building an integrated plant for processing bauxite into refined aluminium. In 1950, EDF set up the company Energie électrique de Guinée (EEG). In 1951, Pechiney and Ugine created the Société africaine de recherches et d’études pour l’aluminium (Sarepa) in order to develop the plant project. In the same period, the British began to study a project for an aluminium plant in the Gold Coast (the future Ghana). In 1952, Alcan opened its site for processing bauxite on the Loos islands and studied other opportunities for implantation. In the same year, as Enelcam sought customers for its energy, Pechiney was studying a project for an aluminium refinement plant in French Cameroun. This type of production did not consume sufficient amounts of electricity so the project was quickly abandoned, but the idea of aluminium production did emerge.

In 1953, following a reports by the Commission des mines of the Commissariat général au plan that raised concerns about the high levels of expenditure needed for an integrated plant, the Ministère de la France d’Outre-mer approved a project of partnership with other European producers presented by Jean Matter, the vice managing director of Pechiney. In July of the same year, Jean Grolée and Jacques Ribadeau-Dumas, director of the aluminium division and general secretary of the Sarepa respectively, organised a mission to decide on the site for the plant in Cameroun; the site of Edéa was chosen. The following month, a programme for expanding capacity, approved by the board of directors, laid out plans to equip small turbine water channels in France and then to build an electrolysis plant in Cameroun and, ultimately, an integrated site processing bauxite into refined aluminium in Guinea. In November, the site of Fria in Guinea was chosen to accommodate the integrated plant, but the installations, and notably the hydroelectric works, made the building schedule too long. The market could only wait six to eight years. The decision to build a smelter in French Cameroun was then taken, even though other potential projects were not mothballed.
In 1955, the Société européenne pour l’étude de l’industrie de l’aluminium en Afrique (Afral) was set up by Pechiney, in association with German, Italian and Swiss producers. Simultaneously, the Ministère de la France d’Outre-mer created the Société civile d’études hydroélectriques du Konkouré et du Kouilou with Afral and Alcan in order to study the possibility of building installations on the two rivers.

In 1956, demand for aluminium was so great that Pechiney considered building facilities on both river sites simultaneously. In July, the Board assigned the task of carrying out the project of building a site on the Konkouré for an aluminium plant to a company bringing together Afral and Alcan. The choice of Konkouré was in line with the Ministère’s preference. At the same moment, the Ministère authorised Pechiney, associated with the American company Olin-Mathieson and with the British company Baco, to implant an alumina plant in Guinea. In December, the Compagnie internationale pour la production d’alumine (Fria) was set up.

Building work began.

In July 1957, the Société hydroélectrique du Kouilou was officially created. Building works along the river began in 1958, in collaboration with the Belgians. In the same year, the Société d ’aluminium de Guinée (Alugui) and the Société hydroélectrique de Souapiti were created in order to generate energy on the Konkouré. This was the year that Sekou Touré opted for independence. Only the alumina plant was completed. In 1959, building works on the two rivers (Konkouré and Kouilou) was finally abandoned for political and economic reasons.

In 1960, Alcan proposed to Pechiney a partnership to process the bauxite at Boké in Guinea. This project never came to fruition. The US government then decided to aid Guinea to build along the Konkouré and to produce aluminium (with Alcoa), but Sekou Touré negotiated an agreement with the USSR.

This quick overview shows the extent to which projects were numerous and often never completed and also the extent to which strategic (access to resources) and competitive aspects played a significant part as well as State intervention. From this mass, the Aluminium du Cameroun project would eventually emerge.

The economic and financial aspects of the Alucam project

The project of building an integrated site in Guinea, processing bauxite into refined aluminium, proved to be very costly. Lesclous (1999) notes that “the commission des mines au Commissariat Général au Plan puts the figure for all of these projects at 100 billion French

10 The Konkouré and the Kouilou are two major rivers in Guinea and in the Congo.
Francs. ‘Which exceeds the potential of the French private sector and requires a very significant contribution from the public authorities that would exceed the funds likely to be allocated through the four-year plan for Overseas Territories.’ J. Matter then floated the idea of partnering with other European producers to carry out this project’ (pp 270). Furthermore, the building schedule proved to be too long in relation to market needs, hence their falling back on French Cameroun where a project for an aluminium refinement plant at Douala had already been studied in 1952 but later abandoned because it consumed too little of the abundant and inexpensive energy. This initial project had led to trips into the field and study reports in which the participants had examined the various potential sites for implantation. In July 1953, a trip by Jean Grolée, Paul Guinet and Jacques Ribadeau-Dumas, representing aluminium, energy and administration within Pechiney respectively, finished with the comparison of four sites: Douala, Bonaberi to the east, a site between Douala and Edéa (Manoka) and, finally, Edéa, next to Douala.

Map n°2 – The Sites Envisaged in Cameroun: Bonaberi, Douala, Edéa

There was a large number of selection criteria: the social climate and, in particular, potential conflicts between various ethnic groups, the cost and the administrative regime governing the land, the quality of the ground, the means of transport, the conditions for settling Europeans (climate, supplies, etc.), and even the dominant winds (which suggests commendable environmental concern for smoke emissions). These different criteria gave preference, still provisional, to the site at Edéa. Production costs for the metal produced was calculated on the basis of all these factors. The report ended with the production costs for each stage of
construction (for capacities of 16,500 and subsequently 45,000 tonnes per year) as well as the cost of fixed capital assets at Edéa.

This initial choice was by no means definitive since a new mission, in November 1953, set out to conduct a new comparison. The participants this time were Matter, Ribadeau-Dumas, Grolée and Castex; senior management and the recently appointed project manager were therefore represented. Grolée studied the availability and price of energy and the possible extension of hydroelectric works but, in particular, focused on a new comparison of the four sites (Bonaberi, Douala, Manoka and Edéa). Once again, Edéa was chosen.

It was during this trip that Ribadeau-Dumas penned a full report on the general situation in French Cameroun. He described the “state of mind of Camerounians with respect to Pechiney-Ugine projects”. Interested parties were classified into several categories: those who provided “full support for finding the most favourable solutions to aluminium (always in compatibility with the general interest of the Territory)”; those who “are, with respect to the interests of the Territory, more coldly calculating” (among these, we find notably the administrator-major of Douala who is not keen on an implantation at Edéa); and finally, those who view the projects “from very particular angles”, notably Camerounians interested either in their personal political future or in the “social development” of the wider population.

However, economic criteria were not set aside. Ribadeau-Dumas drew up the list complete with ample commentary: energy prices, the cost of hydroelectric works, the price of rail transport including a description of the network and rolling stock, rights for importing building equipment and raw materials. The reports ended with a summary of relations with the Territory’s Assemblée in which the issue of political guarantees was broached.

In French Cameroun, the building of the Edéa plant was also the subject of a large number of successive cost estimates. The first “cost estimate” archived followed the trip by Grolée, Guinet and Ribadeau-Dumas in July 1953. Provisional expenditure was detailed, for each stage of the production process, in terms of types of equipment or installation. “Unforeseen costs” worth 20% of the total cost were written in at the end of the estimate. Two “stages” follow, the first for an annual production of 16,500 tonnes, the second of 45,000 tonnes. These initial forecasts were soon supplemented with forward averaging of expenditure, with calculations of financial charges according to the different expenditure plans envisaged and, finally, with cash flow forecasts for Pechiney and Ugine, its partner in the operation. Profits

11 Pechiney Archives, 072-10-21964.
12 Pechiney Archives, 052-2-26615.
13 Pechiney Archives, 052-2-26615.
14 Pechiney Archives, 052-2-26215 and 052-2-28073.
for the company Alucam were calculated for the first eleven years of its existence. This was the first time that profit margins were calculated over several years; for Pechiney’s previous investment projects, profit had only been calculated for one year (Pezet, 2000).

Production costs were also a major factor in decision making. In a note written in January 1954, Ribadeau-Dumas “reiterates that the US State Department had requested… that we be able to provide elements relating to the profitability of the business in Cameroun by estimating production costs, for instance, in relation to Norwegian production costs”\(^{15}\). It was therefore at the request of the American government, by the intermediary of the Ministère des Affaires étrangères, that Pechiney was required to make cost comparisons between plants.

The calculation techniques were affected by the new conditions in which the investment was taking place. A note written in May 1954 also specified the way to calculate the Edéa plant’s production costs\(^{16}\). In addition to the usual elements, financial charges were included: interest on loans, statutory capital interest (5%) and taxes on this statutory loan (22%, the rate then in effect in French Cameroun): “interest on the loan and statutory interest are calculated for each year according to payments made on one or other of these sources of financing in the course of the previous year”. The production cost therefore included financial and fiscal factors, including remuneration on the capital (statutory interest). The amount of capital invested and the modes of financing weighed heavily on the production cost—no longer the cost of one plant so much as that of an entire limited company.

Another important issue was that of technology and its costs. Between 1940 and 1960, the Söderberg process reached its peak\(^{17}\). Alucam was built around this process. Two other major investments in the same period were carried out in France following the same process: Potline A at Saint-Jean de Maurienne (1951-1956) and the Noguères plant (1960). These plants heralded the period of mass production (87,000 tonnes at Noguères) and yet Noguères was also the last of the large Söderberg plants. The process was highly polluting and the competing process (prebaked anodes) was making great strides forward. The Saint-Nicolas plant in Greece was built according to the prebaking process in 1966.

\(^{15}\) Pechiney Archives, 052-2-26615.

\(^{16}\) Pechiney Archives, 052-2-26615.

\(^{17}\) The Söderberg process uses unbaked anodes that bake directly in the electrolysis bath. This technique was developed before the War and competed with the traditional process of prebaked anodes until the 1960s.
Table n°2 – The Major Investments in the Period 1950-1970

<table>
<thead>
<tr>
<th>In Francs 1960</th>
<th>St-Jean 68 pots</th>
<th>St-Jean 152 pots</th>
<th>Edéa</th>
<th>Noguères 3 potlines</th>
<th>St-Nicolas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity (tn/year)</td>
<td>23 000</td>
<td>34 000</td>
<td>50 000</td>
<td>87 000</td>
<td>72 500</td>
</tr>
<tr>
<td>Electrolysis cost (MFr)</td>
<td>18.8</td>
<td>41.5</td>
<td>52.7</td>
<td>115.1</td>
<td>137.6</td>
</tr>
<tr>
<td>Cost in Fr/tn</td>
<td>816</td>
<td>1 220</td>
<td>1 054</td>
<td>1 323</td>
<td>1 898</td>
</tr>
<tr>
<td>Total Plant Cost (MFr)</td>
<td>-</td>
<td>-</td>
<td>213</td>
<td>328.5</td>
<td>-</td>
</tr>
<tr>
<td>Cost in Fr/tn</td>
<td>-</td>
<td>-</td>
<td>4 260</td>
<td>3 776</td>
<td>-</td>
</tr>
</tbody>
</table>

Source: Pezet (2000)

The plant in Cameroun was therefore inexpensive in terms of electrolysis (1054 Frs/tn compared with an average of 1262 for all five plants). In contrast, extraneous investments in the location made it fairly costly in comparison with the plant at Noguères. We should note that exercising a certain degree of social responsibility is no stranger to this phenomenon, as is also the case with the political aspects of the project.

Public actors, local actors: the influence of networks

The French State became a major actor in investment decision making due to its financing policy. A large part of the long-term loans came from the Crédit National and the Caisse centrale de la France d’Outre-mer. In 1952, Pechiney requested a loan of 1 billion French Francs from the Fonds de modernisation et d’équipement. In addition to financing, the State backed the investment in a variety of ways, firstly in a direct manner by adopting favourable fiscal legislation. In its Africa archive, Pechiney possesses a copy of the legal texts relating to investments and their financing contained in the Laws of 7th February and 31st December 1953. They specified that “the Minister of Finance and Economic Affairs is authorised to give the State’s guarantee to loans issued by establishments and companies carrying out the plan for modernisation and equipment on the French mainland (…), the plan for economic and social development of overseas departments and territories”18. Government backing was still direct when it encouraged investments in Africa within the framework of its overseas policy. The Ministère de la France d’outre-mer was very active in the decision making process in French Cameroun and even more so in Guinea, where its goal was to find customers for the newly nationalised company EDF which had projects drawn up for gigantic dams in this country.

With the Plan, the State intervened in an indirect manner. For French industrialists, the Plan created a climate of certainty with respect to a future favourable to investment: “The Plan was

18 Pechiney Archives, 052-2-26215.
defined as an ‘economic dynamic of growth orientated by a forecast’” (Braudel, Labrousse, 1993, pp 1102). It also intervened more directly in the projects in Guinea with, in 1953, the study by the commission des mines au Commissariat général au Plan - see above.

In French Cameroun, negotiations began with the French authorities—the Ministère de la France d’outre-mer was associated with the decision making process as well as the local authorities. Pechiney found itself therefore in familiar territory. A mission report in November 1953 drew up a long list of the personalities encountered19. Included in the list were a representative of the Administration, the High Commissioner in Douala and Yaoundé, the General Secretary of the government in Yaoundé, the Director and Cabinet Secretary, the Administrator-Mayor of Douala, the Director of Economic Affairs, for whom it is specified that he was “X-1932”20, the Port Director of Douala (X-1944), the Director of Customs and Excise, the Head of the Edéa region, and the Director of the Railways of Cameroun (X-1936).

The list continues with parliamentary representatives: Députés or Senators for African constituencies with specific reference to their origins (mainland France or African), their political leanings, their professions and also any notable features, such as the case of M. Soppo Friso: “African, Senator of Cameroun. President of the Commission des Affaires économiques of the ATCAM [Assemblée territoriale du Cameroun]. Director of a building company in Douala. Considered very influential and very well informed in both politics and in business”. Finally, the list ends with the “representatives of industrial and commercial companies”: local representatives from Enelcam (the company generating electricity), from Chantiers et Ateliers de Douala (CADO), from Batignolles building company, from United Shippers, from the Caisse centrale de la France d’outre-mer and also from the Crédit Lyonnais and the Banque nationale pour le commerce et l’industrie (BNCI).

Their interests were manifold and required significant networking and coordination. Other issues came into play, in particular a concern to work towards the development of French Cameroun and Africa as a whole.

Africa’s development, a decisive challenge when Alucam was created

Very early on, some Pechiney managers wondered whether the setting up of foreign companies, as in Senegal, Guinea or Tropical Africa, would have positive effects on local people's living conditions by bringing their countries into competition with the rest of the

19 Pechiney Archives, 052-2-26215.
20 In France, the X is the Ecole Polytechnique, an engineering school that trains the nation’s elite.
world. A 1957 study by Marc-Edmond Morgaut, recruitment manager at Alucam and future head of its subsidiary Alubassa, addressed these questions under three headings:

- **Industrialisation and its consequences.** He feared that Africans were mistaken in believing that “all western countries were ready to compete to settle on their land (…), for who could say if the present industrial initiatives would be followed by many more?”

- **The general idea of ‘development’.** Regarded as fair compensation for a trading form of economy, this development covered mainly public health and schooling. The author considered that, despite much effort and expenditure, this was not geared to the “real needs of Africans”.

- **Urban concentrations.** In particular, European companies created towns without providing them with the means to survive. People flocked in, thus increasing poverty and sometimes worsening living conditions: “Everybody now expects the European style of thinking, which has made these concentrations possible, to provide them with the necessary means for their survival. Coming from a subsistence economy in which everyone lived as best he could, these people are cast empty-handed into an exchange economy where they find themselves sinking.”

Morgaut thus regarded the Pechiney set-up as both all-inclusive, since it contributed to Africa’s development, and realistic, with industry – and this investment in particular – not able to solve all the problems in hand.

At the same time, Pechiney emphasised Alucam’s part in Cameroon’s development. The company cautiously recalled that the smelter could not ensure this development by itself, thereby protecting itself from future discontent or frustration:

“We would be failing in our duty as ‘industrialists’ if we were not anxious to measure their consequences and the interest—in the best sense of the word—that they hold for Cameroonians.

It is only normal that these consequences should be measured realistically, avoiding all exaggeration and also any tendency to underestimate.

It would be overestimating the human effect of the Edéa scheme if, yielding to facile lyricism, we were to see it as a decisive means of putting an end to all the difficulties and insufficiencies from which Cameroon, like many other similar territories, obviously suffers. The Edéa plant cannot by itself provide Cameroon

22 Pechiney/Alcan archives, 001-14-20469: Memorandum of February 22nd 1957: “Incidences des réalisations d'Alucam sur l'évolution sociale et humaine du Cameroun”.

26
with the solution to all its economic woes (...) It is not in itself able to achieve – as has been said too often – the ‘industrialisation’ of Cameroon.”

Pechiney stated its position with regard to the arguments put forward by certain opponents, notably the anti-colonialist movements, against the project:

“This being said, the direct opposite of the views expressed by certain commentators is just as wrong. It is argued that the plant, though located in Cameroon, is nothing or next to nothing for Cameroon. It is allegedly part of some sort of ‘trading’ economy, this time with the water of the Sanaga being traded. According to such arguments, the ‘aluminium industry’ is simply pillaging one of Cameroon’s riches – and an unexploited one at that, none of which has been lost – to produce a metal of little use to Cameroonian.

Lastly, Pechiney stressed the ratchet effect that the creation of Alucam could have. This first initiative would provide evidence that it was possible to develop profitable activity in Cameroon and would in particular provide an economic, social and human basis for other such projects:

“The first point to note is the moral value of this scheme: (...) Alucam employees would become ‘agents in spreading human and social development’ as ‘distributors of purchasing power’ to the benefit of local and regional craftsmen and food crop growers.”

Cameroon’s development, a constant concern for Alucam

The company’s preoccupation with development did not cease after the smelter was started up. In 1970, Pechiney again stressed the need for industrialisation and the role of aluminium in Cameroon’s “economic take-off”. But its words remained cautious, avoiding neither the disadvantages of the scheme (investment costs and risk of imbalance in comparison with ‘harmonious development’: low consumption of the metal in Africa, agriculture, rural migration in favour of new industries), nor the problems that continued to exist at Edéa (teaching and training, site supervision, monitoring of health, retraining of construction workers, improvement of living conditions for rural people).

Yet the memorandum also pointed to the advantages of the scheme: for individuals (jobs, purchasing power, resulting economic activities), for local authorities (taxes, public infrastructure) and for the State (fewer imports, improved balances of trade and payments,

exports). More generally, the Edéa plant provided wealth, improved protection of the forests (firewood), and improvements in the fields of health and inter-African cooperation. In addition to this, Alucam’s impact on the country’s economic development was also based, from 1960 onwards, on the creation of an aluminium processing industry in Cameroon. Indeed, this was stipulated in the 1962 establishment agreement. This sector allowed the State to benefit from the value added from processing locally manufactured goods. Moreover, the processing industry, like Alucam itself, was responsible to some degree for technology transfer via the Cameroonisation of staff. Similarly, the increasing use of local suppliers and subcontractors contributed to the development of a local and regional economic network. Lastly, Alucam’s participation in financing extensions to the power grid helped with industrialisation in the long term.

Beyond economic factors, the development of Cameroon and Africa was based on a relatively innovative social policy. Chronologically, it was this second aspect that characterised Pechiney’s practices in Cameroon.

Human and social issues

With its first real investment outside Metropolitan France, one of the major issues faced by Pechiney was that of unknown people, who were unfamiliar with industrial culture and the victims of strongly entrenched prejudice. Faced with this situation, Pechiney combined well-known approaches implemented in France (Bourguinat 1989, 1997; Capello 2002; Grinberg & Hachez-Leroy 1997; Vindt 2006) with other more innovative measures such as scientific methods of recruitment and the “Cameroonisation” of its staff.

Usual methods: social policy

From the time it opened its plant in Cameroon, Pechiney adopted the standard approach then widespread in French industry, as reflected in the general presentation of the company in 1965:

“Staff housing and living conditions are paramount for Alucam, as they are for Pechiney and Ugine in France.

There is a slogan claiming that work must mean ‘Well-being for all’. Working in the Edéa plant must therefore bring the African, as well as the European, the possibility of having access to a better lifestyle.

Finally, Alucam wishes to develop an Alucam spirit among its workforce, that is to say, the feeling of belonging to a model industrial organisation in which the output expected from each person ensures everyone the benefits of a fair wage, the guarantee of a future and safety.”

The leaflet goes on to present the three estates built for the staff and associated amenities:

“A medical and social welfare centre, a shopping centre, schools and children’s nurseries, a hotel and clubs.”

The desire to create a company spirit was often expressed in sporting metaphors, as in this editorial by Matter in 1958 in the first issue of the Alucam Bulletin, the employees’ magazine issued twice a month:

“I feel that the Alucam Bulletin should also be a token of that ‘team spirit’ which, in industry as in sport, should fill all of us.” (Matter 1958 quoted by Filippi 1998:137).

Alongside corporate information on production, wages, work accidents, etc., the Alucam Bulletin published articles by the medical service on hygiene or diet, a social welfare column on education, polygamy, etc. In the ‘good housewife’ section, social workers advised workers’ wives. Finally, interviews with managers or workers aimed to mould the behaviour of African staff so that it would conform increasingly to western habits. Over and above its informative role, the Alucam Bulletin thus became a means of social and cultural conditioning in its own right.

These policies, advanced as they might be in relation to the successive historical contexts in which they were implemented, were nevertheless standard practice for a company such as Pechiney. It would show itself to be more innovative particularly in matters of staff selection.

Beyond usual methods: staff selection and training

“Probably the least certain and the least predictable aspect of the issue is: How will black workers adapt to our manufacturing processes?” mused a visiting engineer in 1954. He went on:

“In particular, there are human difficulties in operating in a country that knew almost nothing about western working conditions and technology. Never again shall we see, for example, a regularly employed worker coming in with his wives,

intending to make them work while he lounged in a deckchair, watching them and then receiving his wages.”

What mattered most to the French was the balance between black and white people in the future plant. Their approach was a blend of the usual colonial prejudices, clear politico-economic interest and moral considerations:

“Concerning job distribution and collaboration between white and black workers, a first solution would be to take the easiest way out and have as many white staff as possible, keeping black people only for simple manual work; that is to say, in practice, that only white people would be employed in administrative positions. This solution is attractive only superficially. (…) It is obvious that we must seek to use the local population as much as possible. Several reasons can be given in favour of this approach:

Political reasons:
It is reasonable to use local workers, in order to avoid having local governments introduce quotas. (…)

Moral reasons:
The plant must become part of the country in which it is located, and must provide the natives with opportunities for improving their intellectual and material status”.

The human question thus appeared to be an essential one. Pechiney saw it as a potential source of deadlock and was prepared to commit extensive resources to dispel any doubts. In this respect, the selection of the labour force was a crucial issue. In 1956, Alucam replaced colonial practices, deemed to be rough and obsolete, with a number of scientific methods implemented by experts:

“In the old colonial era, workers were selected generally by judging the African applying for employment on the basis of his size and appearance. As the saying went, you tried a ‘bunch of niggers’ before getting the right one! (…)

These rough practices, that could at a push be considered acceptable in choosing men to carry out simple tasks, were totally inadequate for more complex technical work. They were abandoned at Alucam and Fria and were replaced by scientific selection methods based on psycho-technical tests carried out by specialised services.

26 Pechiney/Alcan archives, 001-14-20469: Memorandum of October 27th 1954: “Administrative organisation of the Edéa plant”.
Despite the dire predictions and sarcasm of some of the old colonial elite, these methods have produced remarkable results.”

Pechiney proved to be less innovative in training local people. Practices developed elsewhere were transposed to Cameroon with the aim of providing technical know-how and holding on to a traditionally mobile workforce. Moreover, in addition to being useful for Alucam, the training of local staff was one of the Cameroonian government's main expectations right from the start of the project, and one of the French company’s major contributions to the country’s economy:

“We had been told insistently from the start that this labour force could later be dispatched elsewhere to serve as the basis for a network of foremen and work supervisors, which generally speaking did not exist in Cameroon at the time.”

Similarly, the new agreement signed in 1962 with independent Cameroon recalled the obligation for companies “to favour the employment of local workers, to develop professional and technical training, to facilitate the fastest possible access for Cameroonian citizens to all jobs, including executive ones, in line with their capabilities.”

Far beyond usual methods: the staff “Cameroonianisation”

One of Alucam's major policies in the human field was internal promotion or staff “Cameroonianisation”. In the early days, the plant's managers were exclusively European, but Alucam was already expressing the strategic need to train African managers:

“This type of promotion meets two needs: the first is to associate native people rapidly with management responsibilities, obviously beginning at the levels closest to the workers; the second is that, under the basic principles of sound industrial management, shop-floor managers at least should be recruited locally with the hope of subsequently finding higher-level staff.”

Some African workers were thus selected with the intention of making them team leaders. The Cameroonianisation of foremen began in 1962 but it was only in 1970 that Alucam hired its first Cameroonian executive. Cameroonianisation was to take many years, sometimes to the frustration of the authorities.

28 Idem.
From 1970, Alucam came under pressure to speed things up. It became increasingly difficult to obtain work permits for expatriate workers. In 1973, Alucam started a five-year plan aimed at halving their number, which led to the appointment of the first Cameroonian to a managerial position in 1975. From 1980 to 1988, the number of expatriate executives dropped from 55 to 19. At the present time, several Cameroonians are working in Alcan plants throughout the world, providing tangible proof of the success of this Cameroonisation policy.

Well in advance on social matters, Pechiney was, however, behind the times when it came to the environment.

The last (and neglected) issue: the environment

Environment issues were notably absent for many years from the Alucam project. Nevertheless, Pechiney knew how to deal with environmental issues in its French plants, such as compensation to local residents and investments in antipollution measures (Boullet 1999, 2000; Donze 1984; Grinberg 2003; Grinberg & Mioche 1996; Loison & Pezet 2006; Menegoz 1991, 1997). The smelter was not to be equipped with mini-hoods until 1981 even though the issue was raised in the mid-1970s at the time the plant extension was studied:

“I have not included fume collectors but it is to be feared that a country that has not drawn up stringent pollution control standards in the near future will

31 Louis Ngounou was appointed administrative deputy manager in 1975, then secretary general of Alucam in 1979. *Alu Tam-Tam*, employees’ magazine, nos. 10 and 11, March 1979. Since then, all operational management positions have been—and still are—occupied by Cameroonians.

increasingly feel under-developed. It is therefore extremely likely that something will have to be done in this respect and depending on the severity of the future standards that are likely to be introduced, the estimate could be increased by 5 to 10%.

(...)
It is not out of the question that at the time when this project may be implemented, that is to say towards the end of the present decade, the Government of Cameroon may have introduced outdoor pollution standards as well as standards governing working conditions. The overall cost of the project could then be increased from 5 to 8%, depending on how stringent these standards prove to be.”

However, this did not elicit particular concern:

“In principle the problem of pollution should not arise since we can demonstrate that the prevailing winds always carry fumes away towards the forest and not towards inhabited or cultivated areas. In any case, I feel it is preferable to solve the problem by paying a little compensation rather than through costly installations.”

However, in 1975, fluorine was detected in the water at Edéa and in the public drinking water network. The level measured was 2mg/liter. Pechiney denied this and attempted to prove scientifically, through calculations, that such a high level was impossible:

“A simple calculation shows that this quantity of fluorine, around 2mg/liter, cannot be produced by the plant (…) Moreover, we seem to remember that the water intake is situated upstream from the plant, which rules out any possibility of pollution by lining waste, which, it should be recalled, represents around 9 kg of fluorine per tonne, i.e. approximately one third of the emissions. In our opinion, this reading of 2mg/liter can only be put down to the following causes:
1/ wrong calculation;
2/ wrong analysis;
3/ natural fluorine in the Sanaga.”

But the company was cautious, since it is rare to find rivers containing levels higher than 1 mg/litre. They therefore decided to ‘solve the mystery’ by sending a sample to Pechiney’s Laboratoire de recherche des fabrications (LRF) in France and to analyse a second one “to

determine the quantity of natural fluorine contained in this river”. The memorandum concludes with a political note:

“The examples we have given above of course clearly show the absurdity of any correlation between the plant and the fluorine contained in the river, yet it is advisable to put an end as soon as possible to a problem that may lead to malicious remarks.”

Pechiney did not at the time show any signs of being ‘proactive’, which would have put it ahead of its time. It should be stressed that the island in the Sanaga was not the most obvious place to arouse any such premature awareness. Such is the import of a message sent by Maurice Laparra, head of the LRF, to the authors:

“If such awareness came late in the day at Edéa, it is simply because the fluorine pollution, though undeniable, did almost no damage there. The level of damage depends not only on the quantity of fluorine discharged but also on climatic conditions and the sensitivity of the surrounding vegetation.

There, rain washes out and winds disperse fumes. In contrast to the smelters in France, which are located in steep-sided valleys in the Alps or Pyrenees with a cold, dry climate, surrounded by conifer forests, Edéa is located in an equatorial region with a warm, humid climate, amid luxuriant deciduous forests where the leaves are replaced before necrosis can set in. What goaded Alucam into action was therefore the progressive introduction of international standards that all aluminium smelters had to comply with.”

The company thus began to show concern for the environment in the late 1970s and early 1980s, following general trends in the industry with regard to this issue. For instance, in 1982, the Pechiney employees' magazine Jalons recalled the “essential objectives” of the extension that had just been completed at Edéa: “modernising the plant, increasing production, improving working conditions and protecting the environment”. With regard to the last of these points, the article goes on to explain that “the installation of new pots provided an opportunity to study the gas collection and treatment system” which notably reduced fluorine emissions from the smelter. Alucam was neither a precursor, nor a slow learner. A true sense of responsibility would only come about when sustainable development became a concern for shareholders throughout the world in the late 1990s and early years of the 21st century.

35 Memorandum by Mr Laparra to the authors, July 25th 2007.
Conclusion

This paper’s contribution is first and foremost to describe corporate practices that emerged before the creation of the social ideal (Berger, Luckmann, 1966) that we refer to today as CSR. We have sought to understand the motives of the actors and groups involved in this historical process. Indeed, as a social ideal, the concept of CSR only came into common discourse and was materialised into devices from the 1990s onwards in line with the concept of sustainable development (Moquet, Pezet, 2006; 2005). Yet, the literature—see above—shows that we can identify notable cases predating this period. These cases relate, however, to specific aspects: the environment, social issues, accountability, accounting and reporting, etc. The originality of our contribution here is that we describe a situation in which the three elements that make up CSR are intertwined—the economic, the social and the environmental. Although this combination is not formally materialised, we suggest that it shows early awareness—more or less precocious, yet relatively well combined between 1950 and 1980—of the three pillars of CSR. Why did this growing awareness, followed by concrete steps, occur? Over and above the fact, as we have shown, that the aluminium industry was confronted early on with social, environmental and, of course, economic issues, the project to build a smelter in Cameroon took place in a setting characterised by its degree of uncertainty, by major historical changes, and by the existence and creation of routines.

The major uncertainty was the leap into the unknown constituted, at that time, by any investment of this size in sub-Saharan Africa, a totally “un-industrialised” territory. The presence of competitors made the project even less certain as did the technical issues (an integrated plant or not, choice of the Söderberg process, capacity and electrical power of the pots, etc.). Yet it seems that such major uncertainty only served to foster new behaviours rather than precluding them.

The period was also marked by major historical shifts that brought a dose of uncertainty but also brought in new ideas that tended towards CSR. Decolonisation in particular was both a threat and an opportunity for new practices to emerge with respect to unknown, even feared, populations. Pechiney was successful in developing its relations with the new independent State and in developing its competencies given the new characteristics of its workforce. Finally, the existence and creation of routines enabled the company to innovate without causing unnecessary upheaval. The old routines were tied to Pechiney’s experience in carrying out investment projects (Pezet, 2000). Yet, new routines emerged in this period, in particular in its relations with the French State, which became more interventionist after
World War II, and with the new State-owned company EDF, which become the sole energy provider in France.

Acknowledgements

The research on which this paper is based has been carried out within the framework of a project financed by the Agence Nationale de la Recherche (ANR) entitled ‘Management: Private Practices, Public Issues’. For their help in allowing us access to their archives, I wish to thank the Institut pour l’histoire de l’aluminium’s team for its help. We would also like to thank the ABFH Group at Cardiff Business School and participants at the BHC – EBHA conference held in Milan (2009) for their useful comments.
References

Bourguinat, N. 1989 Conception et exercice d'une politique sociale d'entreprise : Péchiney dans la vallée de l'Arc de 1896 à 1921. Master's degree in History, University of Paris IV.

Cailluet, L. 1995 Stratégies, structures d'organisation et pratiques de gestion de Péchiney des années 1880 à 1971. PhD in History, University of Lyon II.

Donze, J. 1984 La localisation de l’industrie de l’aluminium et son impact sur les régions d’accueil. PhD in Geography, University of Lyon III.

Meisner Rosen C., “Knowing industrial pollution: Nuisance law and the power of tradition in a time of rapid economic change, 1840-1864”, *Environmental History*, Octobre 2003

Savey, S. 1977 *L'industrie française de l'aluminium en France et à l'étranger*. PhD in Geography, University of Montpellier III.

