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Abstract. Testing for normality is of paramount importance in many areas of sci-
ence since the Gaussian distribution is a key hypothesis in many models. As the use
of semi–moments is increasing in physics, economics or finance, often to judge the
distributional properties of a given sample, we propose a test of normality relying
on such statistics. This test is proposed in three different versions and an extensive
study of their power against various alternatives is conducted in comparison with a
number of powerful classical tests of normality. We find that semi–moments based
tests have high power against leptokurtic and asymmetric alternatives. This new
test is then applied to stock returns, to study the evolution of their normality over
different horizons. They are found to converge at a “log-log” speed, as are moments
and most semi–moments. Moreover, the distribution does not appear to converge
to a real Gaussian.

1. Introduction

The problem of normality testing is well known and has generated plenty of atten-
tion from researchers, see Mardia (1980) and D’Agostino and Stephens (1986). This
is because a lot of classical optimal procedures were developed based on the normality
assumption. However, researchers soon realised that this assumption was not always
satisfied. Three approaches can be taken to deal with non-normality of data. The
first approach is transforming the data to normality so that the classical procedures
could still be used. The second approach is the use of nonparametric procedures. The
third is to use robust procedures that are less sensitive to deviation from normality,
especially tail behaviour. Each of the three comes with strengths and weaknesses and
there is no consensus on which is the best approach in a given case.

The role of normality testing is not just to see if the data are well approximated
by the normal distribution; but also to provide information on the deviation from
normality. This information would then guide the researchers to the best approach
in dealing with the non-normality of their data. One of the illustrations of such
an approach can be found in the study of stock returns distributions, which first
came into focus with Mandelbrot (1963) and Fama (1965). These returns were found
generally non-Gaussian, yet seem to converge to normality.

In this research, it will be assumed that one is testing normality because the
user wishes to fit a financial model (either a classical Gaussian model or an alter-
native model using asymmetry and/or heavy tails). Suppose the data collected,
x1, x2, · · · , xn, represent an independent and identically distributed (iid) random sam-
ple of size n from a population with probability density function f(x) and cumulative
density function (cdf) F (x). Let Φ be the cdf of x that is normally distributed with
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unknown mean and variance. The null hypothesis in this problem of testing for nor-
mality is H0 : F (x) = Φ(x) and the alternative hypothesis simply states H0 is false.
Hence only omnibus tests will be considered in this article. Here, omnibus refers to
the ability of a test to detect any deviation from normality with an adequate sample
size. However, as we consider financial returns, which are supposed to be continuously
distributed, our definition of omnibus tests is restricted to continuous distributions,
hence the alternatives cannot be a discrete distribution, like the binomial.

In this problem, the focus is on failing to reject H0 so that the conclusion is that
the data come from a normal distribution. As noted by D’Agostino and Stephens
(1986), this distinguishes normality testing from most statistical tests. Also, with a
vague alternative hypothesis, they commented that ‘the appropriate statistical test
will often be by no means clear and no general Neyman-Pearson type (test) appears
applicable’. Hence, it will be unlikely to have a single test that will have power
superior to their alternatives. This fact is the origin of the vast number of tests of
normality.

Indeed, there is an impressive number of normality tests in the literature. Major
power studies done by Shapiro et al. (1968) and Pearson et al. (1977) have not arrived
at a definitive answer; but a general consensus has been reached about which tests are
powerful. Pearson (1900) chi-squared test, which is possibly the oldest, is not very
sensitive. Data are grouped and compared to the expected counts under normality.
Since information is lost in the grouping and this test is not specially tailored for the
normal distribution, the conclusion is not surprising.

At the opposite end of the spectrum of normality tests, the Bowman-Shenton test is
quite powerful. Although it is not a strictly speaking omnibus test (a distribution may
have the same third and fourth moment than a Gaussian and yet be quite different)
it has an advantage in terms of practice. This test is based on moments and such
statistics may be used to judge the type of departure from normality and to model
an alternate distribution, e.g. with an Edgeworth expansion or a Cornish-Fisher
expansion.

Using the same sort of thought, we propose three tests based on semi–moments.
These tests may be used to detect departures from normality in data but at the same
time provide a mean to understand more about these departures. The use of semi–
moments in financial markets analysis seems particularly justified, especially in the
light of such findings as those of Fishburn (1977) and Tversky and Kahneman (1974)
and Kahneman and Tversky (1979). In the following sections we will introduce the
main families of normality tests, present our semi–moments based tests and some of
their properties, then conduct a detailed power study of some of the most powerful
tests in the literature. Eventually, we apply our tests to stock returns and study the
influence of time scales on their normality.

2. Existing Normality Tests

There are many available tests of normality, probably more than 501. Testing for
normality has been an important question in statistics since the beginning of the
XXth century, for normality is hypothesised in many models. We will present in this
section the most important existing tests, focusing on those which have been found
most powerful. To clarify our exposition of the existing tests, we regroup them in
broad families. Normality tests can be classified in three categories: those based on

1For a detailed survey of the literature, see Mardia (1980) and D’Agostino and Stephens (1986).
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the empirical distribution function (EDF), those based on regression techniques, and
finally, the tests based on moments.

2.1. Distance/EDF Tests - Anderson-Darling A2. This category of tests can
be traced back to the χ2 goodness of fit test developed by Pearson (1900). EDF or
distance tests are a broad class of normality tests that are based on a comparison
between the EDF, Fn(x(i)) = i

n , and the hypothesised distribution under normality,
Zi , as defined by:

Zi = Φ
(
x(i) − x̄

s

)
,

where x̄ = (1/n)
∑n

i=1 xi and s2 = 1/(n−1)
∑n

i=1(xi− x̄)2. Stephens (1974) provided
versions of the EDF tests with unknown µ and σ2. EDF tests can be further classified
into those involving either the supremum or the square of the discrepancies, Fn(x(i))−
Zi . The most well known EDF tests involving the supremum is the Kolmogorov-
Smirnov statistic K = max(D+, D−) where D+ = supi(i/n−Zi) and D− = supi(Zi−
(i− 1)/n).

EDF tests involving the square of the discrepancies are known as those from the
Cramér-von Mises family with the general form:

CvM = n

∫ (
i

n
− Zi

)2

ψ(Zi)dZi,

where ψ(Zi) is the weighting function. If ψ(Zi) = 1, that is the Cramér-von Mises
statistic itself, ω2. For the Anderson- Darling statistic, A2,

ψ(Zi) =
1

Zi(1− Zi)
.

This choice of ψ(Zi) gives emphasis to tail values and the computational form is given
by:

A2 = − 1
n

n∑
i=1

((2i− 1)[ln(Zi) + ln(1− Zn−i+1)])− n.

Stephens (1974) extensively studied these tests. Moreover, he gave corrections
increasing the power of many different EDF tests, and found that A2 has the highest
power among them when used with his corrections. The asymptotic distribution is
known and it was found that the critical values for finite samples quickly converge to
their asymptotic values for n > 5.

2.2. Regression/Correlation Tests - Shapiro-Wilk W . The main idea behind
these tests is normal probability plotting. Normal probability plotting is a graphical
technique to determine the normality of the data by looking for linearity in a plot of
the ordered observations x(i) against the expected values of standard normal order
statistics, mi. Formal determination of the linearity uses regression or correlation
techniques, hence the name of this group of tests. If x(i) is indeed normal, then the
slope would give the standard deviation of xi, σ, and the intercept, the mean of the
xi’s, µ. Since the ordered observations are not independent, let V = (vij) be the n×n
covariance matrix, x′ = (x1, x2, · · · , xn) and m′ = (m1,m2, · · · ,mn). The best linear
unbiased estimators of the slope and intercept, using generalised least squares, are:
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σ̂ =
m′V−1x

m′V−1m
and µ̂ = x̄.

The usual symmetric estimate of the variance regardless of the distribution of xi

is given by s2 . Then the Shapiro and Wilk (1965) W statistic is defined as:

W =
Kσ̂2

(n− 1)s2
=

a′x

(n− 1)s2
=

(∑n
i=1 aix(i)

)2∑n
i=1(x(i) − x̄)

,

where

a′ = (a1, a2, · · · , an) = m′V−1
[
(m′V−1)(V−1m)

]− 1
2 ,

K =
m′V−1m

m′V−1V−1m
.

W compares the ratio of two estimates of variance,σ̂2 and s2, apart from a nor-
malising constant, K, and (n− 1). If the distribution of xi is normal, then W will be
close to 1. Otherwise, W is less than 1. The critical values of W are tabulated up to
sample sizes of 50. However, values for {ai} are also needed to carry out this test. For
larger sample sizes, Shapiro and Francia (1972) noted that the ordered observations,
as n increases , may be treated as independent (i.e. vij = 0 for i 6= j) . Treating V
as an identity matrix, W can be extended for n larger than 50 by

W ′ =
(
∑n

i=1mixi)
2∑n

i=1(x(i) − x̄)
∑n

i=1m
2
i

Values of {mi} are available from Harter (1961) up to sample sizes of 400. However,
two tables are still needed to carry out this test. A further modification was suggested
by Weisberg and Bingham (1975) that uses this approximation:

mi ≈ Φ−1

(
i− 3

8

n+ 1
4

)
due to Blom (1958). This approximation was shown to be close even in small

samples, and the null distribution of W was practically identical toW ′. This simplifies
the computation of the test statistics since separate values for mi need not be kept.
Royston (1982) used another approximation suggested by Shapiro and Wilk (1965)
for {ai} and applied the following normalising transformation to W :

y = (1−W )λ and z = (y − µy)/σy

where z is standard normal and λ , µy and σy are functions of n. λ is estimated by
maximising the correlation between certain empirical quantiles of W and the corre-
sponding standard normal equivalent with weights given according to the variance of
a normal quantile. The relation between µy and σy and n is then determined by ap-
plying λ to simulated values W . The normalising transformation producing W ∗ does
away with any special tables, besides the standard ones, needed to find the critical
values of W . However, the first version of this approximation was not entirely flawless
and was therefore corrected and enhanced by Royston (1993b), who published as well
a second version of his algorithm the same year.
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2.3. Moments Tests - Bowman-Shenton K2. Since the concepts of skewness and
kurtosis can be used to differentiate between distributions, one of the most important
classes of normality tests is based on these moments. The standardised coefficients
of skewness,

√
β1, and kurtosis, β2 are defined as√

β1 =
µ3

σ3
and β2 =

µ4

σ4

where µi is the ith central moment.
Skewness refers to the symmetry of a distribution. For a symmetric distribution

like the normal,
√
β1 = 0. A distribution that is skewed to the right has

√
β1 > 0

while one that is skewed to the left has
√
β1 < 0.

Kurtosis refers to the flatness or ‘peakedness’ of a distribution. The normal distri-
bution has β2 = 3 and is used as a reference for other distributions. A leptokurtic
distribution is one that is more peaked and with heavier tails than the normal, re-
sulting in β2 > 3. A platykurtic distribution has a flatter distribution with shorter
tails than the normal, hence β2 < 3.

The sample skewness,
√
b1 , and kurtosis, b2 , are defined as:√

b1 =
m3

m
3/2
2

and b2 =
m4

m2
2

where mi is the ith sample moment. Since the moments of
√
b1 and b2 are known,

their distributions have been approximated using Pearson or Johnson curves. The
critical values for the normality tests of skewness and kurtosis are tabulated in Pearson
and Hartley (1972) for selected values of n ≥ 25 at α = 0.02 and 0.10. Normalising
transformations have been found for

√
b1 and b2 by D’Agostino (1970) and D’Agostino

and Pearson (1973), respectively. Z(
√
b1) and Z(b2) denote the resulting approximate

standardised normal variables. D’Agostino and Pearson suggested combining
√
b1 and

b2 in the following way:

K2 = Z2(
√
b1) + Z2(b2)

where K2 is distributed as χ2
2 since it is the sum of the squares of 2 standardised

normal equivalent deviates. However, they assumed that the squared standardised
normal equivalent deviates were independent, which is only asymptotically true. The
error can be important, especially for small sample sizes. Using simulations, Bowman
and Shenton (1975) obtained 90%, 95% and 99% contours for K2, for sample sizes
between 20 and 1000. Carrying out this test would then only require calculating

√
b1

and b2, selecting the appropriate contour, and determining if (
√
b1, b2) falls within

the contours. If it does not, then normality is rejected.
This same approach, albeit without the normalising transformations and the tab-

ulation of the contours taking dependency into account, is used again in the Jarque
and Bera (1981) test. Therefore, this last test is only efficient for large samples.

3. Semi-Moments Based Tests of Normality

3.1. The Test Statistics. Since semi–moments complement moments and provide
additional information, at odd and even orders they contain informations on the shape
and location of the distribution, it seems interesting to use them in normality tests.
Their main advantage over classical moments, in the context of testing for normality,
comes from the fact that they allow to distinguish tail asymmetries at a relatively
low order. Therefore we expect that the use of semi–moments in tests of normality
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can increase the power of the moments based tests, especially against asymmetric
leptokurtic alternatives.

We propose three different test statistics, one focusing more on the left tail asym-
metries, one more dedicated to right tail asymmetries. The last statistic is more
neutral as to the location of the asymmetries.

As we have noticed in our study of the sampling properties of the semi–moments,
there is a degree of dependence between the estimators of the semi–moments. There-
fore, in order to minimise the perturbations caused by this dependence, we chose to
use cross selected semi–moments. That is, we combine the left (right) semi–skewness
to the right (left) semi–kurtosis, respectively. Moreover, to limit noises in the esti-
mations of the critical values, we standardised the estimators of the semi–moments
used.

The first statistic proposed here is expected to perform best against positively
skewed alternatives. It is as follows :

(3.1) ∆1 =

(
m̂−

3 + [n/(n+ 1)]
√

2/π
)2

σss
+

(
m̂+

4 − [(n− 1)/(n+ 1)]3/2
)2

σsk
,

with:
σss =

1
n

1.743795− 1
n2

10.062152,

and
σsk =

1
n

21.558373− 1
n2

209.049576.

In these expressions, as before, m̂−
3 is the estimator of the left semi–skewness, m̂+

4
the estimator of the right semi–kurtosis and n is the number of observations in the
sample tested. Following Fisher (1929) we believe that the variance of the estimators
of semi–moments on Gaussian samples are a polynomial in 1/n, the inverse number of
observations, of order two. The estimation of these variances, σss for semi–skewness
and σsk for semi–kurtosis, is detailed in Appendix A.

Using the same notation, the second statistic, expected to perform best against
negatively skewed alternatives, is given by:

(3.2) ∆2 =

(
m̂+

3 − [n/(n+ 1)]
√

2/π
)2

σss
+

(
m̂−

4 − [(n− 1)/(n+ 1)]3/2
)2

σsk
,

The last statistic we propose has a structure that makes it generally equal to
either ∆1 or ∆2, depending on the properties of the sample. However, since it uses
maximums, its distribution is further away from the underlying χ2 and it may have,
in some cases, a structure with parallel semi–moments (e.g. right semi–skewness
and right semi–kurtosis), and therefore it may prove less powerful against certain
alternatives. This statistic is as follows:

∆3 =

(
max(

∣∣m̂+
3

∣∣ , ∣∣m̂−
3

∣∣)− [n/(n+ 1)]
√

2/π
)2

σss
+

+

(
max(

∣∣m̂+
4

∣∣ , ∣∣m̂−
4

∣∣)− [(n− 1)/(n+ 1)]3/2
)2

σsk
,

(3.3)
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As explained before, the exact sampling distribution of semi–moments is as yet
unknown, even the moments of it. Moreover, the non linear dependency structure
between semi–moments implies that, to construct the distribution of a statistic com-
prising semi–skewness and semi–kurtosis, we need the multivariate distribution of all
these estimators. Therefore, we tabulated critical values for the different test sta-
tistics we propose. These values are based on Monte Carlo simulations of 100 000
samples of the 34 sizes already used in the study of the sampling properties of the
semi–moments. The resulting critical values for the three statistics are presented in
tables 1, 2 and 32.

Table 1. Percentage points of the distribution of ∆1

Confidence Levels
sample size 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001

25 2.5860 3.3347 4.6210 7.4369 11.1187 17.5347 23.7369 40.3180
50 2.6633 3.4104 4.5707 7.1009 10.3100 15.9821 21.4919 39.4102
75 2.7630 3.4913 4.6714 7.1884 10.1869 15.3459 20.3122 36.7530
100 2.8178 3.5546 4.6726 6.9474 9.7999 14.5279 19.1375 34.0987
250 2.9744 3.6933 4.8042 6.9339 9.5498 13.3710 16.3059 26.4350
500 3.0833 3.7890 4.8417 6.8699 9.0618 12.2753 15.3635 25.2615
1000 3.1359 3.8159 4.8489 6.7446 8.8277 11.7667 14.3612 22.0249
5000 3.1884 3.8566 4.8602 6.6731 8.5529 11.2425 13.5729 18.6675

Table 2. Percentage points of the distribution of ∆2

Confidence Levels
sample size 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001

25 2.6050 3.3547 4.5963 7.4030 11.1573 17.4214 23.1066 43.1937
50 2.6658 3.3952 4.5744 7.0782 10.2906 15.8581 21.7465 41.5505
75 2.7565 3.4757 4.6475 7.1586 10.1378 15.4407 20.8761 39.9846
100 2.8129 3.5454 4.6754 7.0189 9.7665 14.2651 18.9436 31.9495
250 2.9848 3.6849 4.7957 6.9735 9.4567 13.0405 16.5189 27.2613
500 3.0892 3.7634 4.8131 6.8358 9.1231 12.4003 15.3754 23.5589
1000 3.1108 3.8139 4.8568 6.7187 8.7672 11.7696 14.2845 20.7197
5000 3.1884 3.8485 4.8415 6.6460 8.5514 11.2946 13.5171 19.5563

Table 3. Percentage points of the distribution of ∆3

Confidence Levels
sample size 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001

25 3.1935 4.5256 6.7692 12.1857 19.0634 31.8223 41.9733 78.1272
50 3.1777 4.4377 6.6137 11.1382 17.1549 28.0070 38.2603 71.3414
75 3.2813 4.4962 6.6013 11.0275 16.7108 26.5282 36.3657 64.9030
100 3.3338 4.5160 6.4754 10.6383 15.7954 25.0846 32.1906 57.3123
250 3.4230 4.5159 6.3430 10.1040 14.5024 21.0188 27.3957 44.6579
500 3.3955 4.4892 6.2152 9.4247 13.2461 18.7645 23.7978 39.2705
1000 3.3933 4.4437 6.0026 8.9144 12.1760 17.3116 21.0481 32.7229
5000 3.3931 4.3236 5.7419 8.3262 11.0594 14.9927 18.0884 27.5194

As it could be expected, the critical values of ∆1 and ∆2 are very similar. In
pure theory, they even should be equal, since the left and right semi–skewness have

2The results for all sample sizes are in annex
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symmetrical distributions and the left and right kurtosis have the same distributions
for a symmetrical distribution as the Gaussian. A further comment is that, since the
distribution of ∆3 for the Gaussian has more extreme values for the percentage points
computed here, the test is statistic is further away from the classical χ2 approximation.

3.2. Sensitivity Surfaces. As a first mean to analyse the performance of our tests,
we used the sensitivity surface presented by Mudholkar et al. (1991). This procedure
consists in studying the variation of the statistic’s level when applied to ‘profiles’, that
is ‘ideal samples’, from the Tukey lambda family of two parameters distributions.

Profiles are samples that are perfectly representative of their parent distribution.
A size n profile Pn has the following definition:

Definition 3.1. A set {y1, y2, · · · , yn} is a size n profile Pn of a given distribution F
if supx |FnPn(x)− F (x)| → 0 when n→∞, where FnPn is the empirical distribution
function (EDF) of the {y1, y2, · · · , yn}, and FnPn(x) is the value of this EDF at x.

Patel and Mudholkar (1983) show that for any continuous distribution F , the size
n profile given by:

P ∗
n =

{
F−1

(
i− 0.5
n

)
, i = 1, 2, · · · , n

}
,

is optimal among all size n profiles of F , in the sense that supx |FnPn(x)− F (x)| and
EF [FnPn(X)− F (X)]2 both reach their minimum for Pn = P ∗

n .
These optimal size n profiles are employed for the distributions of the two shape

parameters Tukey lambda family. These distributions are the distribution of random
variables Xλ1,λ2 such that:

Xλ1,λ2 = F−1(U) =
Uλ1 − 1
λ1

− (1− U)λ2 − 1
λ2

,

with (λ1, λ2) ∈ R2, using L’Hospital rule when λ1 and λ2 are zero. This distribution
proves almost undistinguishable from a normal N (0, σ), with σ = 1.46357 at λ1 =
λ2 = 0.1349 and exhibits similar moments at λ1 = λ2 = 5.2 although with truncated
tails. To help interpret the surfaces, the members of this family can be classified as
follows:

Class I : (λ1 < 1, λ2 < 1), contains most of the distributions occurring in
statistical and economical practice, they are unimodal with continuous tails.
When both parameters are below zero, the kth moment exists when λ1, λ2 ≥
−1/k.

Class II : (λ1 > 1, λ2 < 1), these are distributions similar to the exponential.
When λ1 = ∞ and λ2 = 0, it is indeed the exponential distribution.

Class III : (2 < λ1 < 1, 2 < λ2 < 1), contains U-shaped distributions, with
both tails truncated.

Class IV : (λ1 > 2, 2 < λ2 < 1), distributions have a density with one mode
and one anti mode, truncated at both tails, the right tail rising sharply.

Class V : (λ1 > 2, λ2 > 2), regroups unimodal distributions with both tails
truncated.

To get an idea of the moments properties of these distributions, figure 1 presents
their approximate skewness and kurtosis. They are symmetric along the λ1 = λ2 axis
and approximately along semi lines following λ1 = 1 and λ1 = 2. They are platykurtic
in the neighbourhood of these semi lines and leptokurtic elsewhere.
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Figure 1. Approximate moments of the Tukey Lambda distributions

Sensitivity surfaces were obtained, with λ1 and λ2 between −2 and 12, for the three
statistics presented in 3.1, 3.2 and 3.3. This surfaces are presented in figures 2, 3 and
4, respectively.
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Figure 2. Sensitivity Surface of ∆1 for n = 25

For ∆1 and ∆2, the sensitivity surface confirm the characteristics anticipated. Both
perform very well against asymmetric distributions, (away from the λ1 = λ2 axis).
They are however slightly asymmetric, ∆1 being stronger against leptokurtic right
skewed distributions, while ∆2 performs better against leptokurtic left skewed distri-
butions. However, the difference is only limited and situated mostly in areas where
the rejection of normality is very strong. The rest of there sensitivity surfaces are
roughly identical, implying that there powers will be very similar against most alter-
natives. On the other hand ∆3 presents a quite different sensitivity surface. Indeed,
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Figure 3. Sensitivity Surface of ∆2 for n = 25
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Figure 4. Sensitivity Surface of ∆3 for n = 25

as expected, it performs as the best of the two previous tests for strongly asymmetric
leptokurtic distributions, yet at other points of the surface it presents deep rifts indi-
cating a limited power. The main such rift originates at the (5.2,5.2) point of quasi
normality and follows the lines of λ2 = 1, an other rift is along the λ1 = 1. ∆1 and ∆2

also present such zones of weakness, yet in their case they are far less deep, indicating
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a much higher sensitivity against such alternatives. Another marking feature of the
sensitivity surfaces is that there is, in all three cases a noticeable recess along the
axis of symmetrical distributions, marking a lesser power against those alternatives.
However, this feature is much stronger in the case of ∆3 which therefore should have
less power than its siblings against symmetric alternatives.

4. Powers Comparison

The power of ∆1, ∆2 and ∆3 against different alternatives and compared to the
main existing normality test is estimated through a simulation study. For a review
of other major power studies, see Shapiro et al. (1968) and Pearson et al. (1977) or
Saniga and Miles (1979), which focuses on moments tests and stables alternatives.
Refer to section 2 for some general conclusions that these major power studies have
reached.

4.1. Simulation Set-up. The simulation study was carried out with n = 25, 50 and
1003 with 5000 samples drawn from 26 non-normal distributions specified in Table 4.
The distributions considered are classified according to the following groups:

Group I : symmetric, leptokurtic,
Group II : symmetric, platykurtic,
Group III : asymmetric, leptokurtic,
Group IV : asymmetric, platykurtic.

The distributions within each group are arranged in order of increasing departure
from normality as measured by their standardised coefficient of skewness

√
b1 and

their standardised coefficient of kurtosis, b2. In group I, the distributions include
SC(ε, σε) which is the scale-contaminated normal with 100∗ε% of N (0, σ2

ε) being the
contaminant. Similarly, LC(ε, µε) is the location-contaminated normal with 100 ∗ ε%
of N (µε, 1) being the contaminant in Group III.

Table 4. Properties of the Distributions Used in the Power Study

distribution varX
√

β1 β2 distribution varX
√

β1 β2

Group I. Symmetric-Leptokurtic Group III. Asymmetric-Leptokurtic
N (0, 1) 1 0 3 Weibull(2) 0.21 0.63 3.25
t10 1.25 0 4 LC(0.10, 2) 1.36 0.36 3.36
Logistic 3.29 0 4.2 LC(0.20, 6) 6.76 1.18 3.18
SC(0.05, 3) 1.4 0 7.65 χ2

10 20 0.89 4.20
SC(0.1, 3) 1.8 0 8.33 LC(0.10, 6) 4.24 1.78 5.98
t4 2 0 ∞ LC(0.05, 6) 2.71 2.07 8.99
SC(0.05, 5) 2.2 0 19.96 χ2

2 4 2 9
SC(0.1, 5) 3.4 0 16.45 χ2

1 2 2.83 15
t2 ∞ 0 ∞ Weibull(0.5) 20 6.62 87.72

Lognormal(0,10) 4.67 6.18 113.94
Group II. Symmetric-Platykurtic

U(0, 1) 0.08 0 1.8 Group IV. Asymmetric-Platykurtic
Beta(1.25,1.25) 0.07 0 1.91 Beta(3,2) 0.04 -0.29 2.36
Beta(1.5,1.5) 0.06 0 2 Beta(2,1) 0.06 -0.57 2.4
Beta(2,2) 0.05 0 2.14 Beta(2.5,1) 0.05 -0.73 2.76

3Due to the fact that, with samples of 100, the non-normalities of the samples already become “very”
easy to detect for all tests, we limited our study to this size.
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The tests used in this power study are the three tests presented in section 3.1, the
Bowman-Shenton test, the Anderson-Darling test (in its Stephens (1974) guise), the
Shapiro-Francia and the Royston’s 1993 version of the Shapiro-Wilks.

The existing normality tests considered in this study include W (W ′), W∗ and A2.
Recall that W is the Shapiro and Wilk (1965) test and A2 is Stephens (1974)’s version
to the Anderson-Darling (1954) test. Where the sample size exceeds 50, Shapiro and
Francia (1972) W ′ will be used in place of W since it extends the range of W from 50
and below to 400. W∗, which is Royston (1993b) approximation to W(W’), will be
considered a separate test as it will be informative to compare its power to W(W’).
Bowman and Shenton (1975)’s K2 is also included as it is structurally closest to our
tests.

To differentiate between the tests to see if one test is superior to another, the
practice in the literature has been to determine which test has the highest power
based on the same set of pseudo-random numbers for each distribution. To generalise
the results across different distributions, the averaged rank calculated for each test
is sometimes used. The fact that a different set of pseudo-random numbers might
give rise to a different ordering of the power is usually ignored. To account for
this variability, a formal statistical test on the equality of the power of the tests is
conducted in this power study.

As all the tests are subjected to the same set of pseudo-random numbers, the
powers of the individual tests are correlated. Hence, Cochran’s Q test (Cochran,
1950; Berger and Gold, 1973) is used to account for this correlation. In cases where
the equal power hypothesis is rejected, McNemar’s test with correction for continuity
is used for pairwise comparisons to determine whether the test with the highest power
is significantly different from the rest. To maintain the overall type I error rate at
0.05 in the presence of multiple testings, the idea from Fisher’s Least Significance
Difference is used here. This means that multiple comparisons are carried out only
if the hypothesis of equal power using Cochran’s Q is rejected. In addition, the same
type I error rate is used for both Cochran’s Q and McNemar’s tests. For details of
both tests, refer to Siegel and Castellan (1988).

The results from using Cochran’s Q and McNemar’s tests will be reflected as su-
perscripts to the test with the highest power in this power study. The superscripts
will denote the number of tests, including the one with the highest power, that are
significantly better than the rest. Hence, a ‘1’ would reflect that the test with the
highest power has significantly higher power than the rest while a ‘7’ would mean
that all the tests have the same power. In practice, we do not use superscripts in
the case where all tests have the same power. The empirical level of each test is also
given based on a normal sample of 100 000. 95% confidence intervals on the empirical
level of each test will be used to assess if they contain the relevant nominal levels.
This information is useful since it acts as a check on possible inflation/deflation of
the power estimates.

4.2. Results of the Power Tests. The results are presented in two tables for each
sample size and significance level. The first table details the results for symmetric
distributions, while the second is concerned with asymmetric distributions. Presented
in table 5 and 6 are the results for a sample size of 50, with a confidence level of 0.1.
These are probably the kind of parameters most used in empirical works. The detailed
results for the other sizes and significance levels are available in annex C. The results
presented with an exponent are significantly better than the rest (as indicated by the
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aforementioned test procedure). When no results have an exponent, all tests perform
similarly.

Table 5. Power comparisons of normality tests based on 5000 samples
at α = 0.10 and n = 50, Symmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W∗
Group I. Symmetric-Leptokurtic
N (0, 1) 0.0924 0.0914 0.0718 0.0448 0.10602 0.0978 0.10222

t10 0.2446 0.25321 0.2268 0.1940 0.1962 0.1692 0.1956
Logistic 0.28802 0.28822 0.2726 0.2370 0.2438 0.2016 0.2228
SC(0.05, 3) 0.46822 0.46522 0.4566 0.4314 0.3608 0.3636 0.4050
SC(0.1, 3) 0.65362 0.65942 0.6496 0.6354 0.5508 0.5240 0.5824
t4 0.54642 0.54202 0.5342 0.5030 0.5142 0.4620 0.4712
SC(0.05, 5) 0.71202 0.71362 0.7054 0.6918 0.6434 0.6560 0.6762
SC(0.1, 5) 0.89523 0.89483 0.89483 0.8886 0.8592 0.8550 0.8708
t2 0.8728 0.8720 0.8704 0.8718 0.90061 0.8506 0.8648

Group II. Symmetric-Platykurtic
U(0, 1) 0.0036 0.0072 0 0.0818 0.7296 0.75412 0.75442

Beta(1.25,1.25) 0.0064 0.0056 0.0006 0.0232 0.53301 0.4294 0.4940
Beta(1.5,1.5) 0.0028 0.0026 0 0.0108 0.38461 0.3136 0.3182
Beta(2,2) 0.0042 0.0052 0.0008 0.0022 0.23101 0.1634 0.1536

Table 6. Power comparisons of normality tests based on 5000 samples
at α = 0.10 and n = 50, Asymmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W∗
Group III. Asymmetric-Leptokurtic

Weibull(2) 0.46062 0.4202 0.3204 0.2712 0.44742 0.4354 0.4206
LC(0.10, 2) 0.26341 0.2400 0.2232 0.1592 0.2290 0.1880 0.1972
LC(0.20, 6) 0.9990 0.9732 0.7990 0.9988 1.00002 1.00002 1.00002

χ2
10 0.66661 0.6276 0.5356 0.4924 0.6128 0.5862 0.5946

LC(0.10, 6) 0.99564 0.99564 0.9920 0.99524 0.9922 0.9938 0.99484

LC(0.05, 6) 0.93081 0.9282 0.9282 0.9244 0.9028 0.9086 0.9222
χ2

2 0.9978 0.9926 0.9602 0.9848 0.99942 0.9882 0.99982

χ2
1 1.00006 0.99986 0.9972 0.99986 1.00006 1.00006 1.00006

Weibull(0.5) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Lognormal(0,10) 1.00002 0.99962 0.9938 0.9988 0.99982 0.9982 1.00002

Group IV.Asymmetric-Platykurtic
Beta(3,2) 0.0648 0.0814 0.0290 0.0214 0.28641 0.2108 0.2032
Beta(2,1) 0.3616 0.4902 0.2312 0.2730 0.84902 0.8318 0.84642

Beta(2.5,1) 0.6174 0.7190 0.4798 0.4896 0.9094 0.9046 0.91681

The results call for some analysis and comments. Very obviously not all test have
the same sensitivity to all sorts of departures from normality. Therefore, we will
present our comments by class of distributions.

4.2.1. Asymmetric-Leptokurtic Alternatives. This class of distributions is quite im-
portant in economical practice, since the empirical distributions always exhibit lep-
tokurtosis and present a certain degree of skewness. It is the most frequent dis-
tribution for phenomena that present smooth tails (with no truncation on extreme
values).
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The classification of the tests in terms of power on this class of distributions seems
to depend largely on the size of the samples. In smaller samples the Anderson-Darling
A2 has more power, closely followed by the ∆1 and ∆2 tests. These two tests seem
to gain relative power when the size increases and for larger samples they clearly are
the most powerful tests against asymmetric leptokurtic alternatives. They perform
particularly well against distributions that are not too far away from the normal, as
their powers are more important for the distributions at the top of our list.

Moreover, we notice that there exists a certain level of deflation for the three ∆
tests, that present on normals a power always inferior to the nominal level. This
deflation is less severe for larger samples and at 10% confidence level, probably ex-
plaining the variations in relative power of the tests. This characteristic is shared by
the Bowman-Shenton K2, although at a less important level. This is probably caused
by the difficulties arising when simulating small Gaussian samples for the estimation
of the critical values.

Another important feature of the power tests against this class of alternatives
is that, as expected, the ∆2 test is consistently less powerful than the ∆1. The
explanation of such a feature of the results is quite obvious: the skewness of the
distributions in our panel of asymmetric-leptokurtic are all positive. It is to notice
that the power of ∆3 is generally not even as good as the minimum of ∆1 and ∆2.
However it still retains a certain level of power and its lack of power compared to
its siblings may be caused by a certain tendency to deflation, shown by its small
percentage of rejection of the normal.

We notice as well that on this class of alternatives, the Anderson-Darling A2 seems
to be generally better than the Shapiro tests.

4.2.2. Symmetric-Leptokurtic Alternatives. This class of distributions is also quite
important in many empirical fields. Furthermore, it encompasses many theoreti-
cally important distributions like the t distribution. Though not as frequent as the
asymmetric-leptokurtic, these distributions are quite common.

The first striking result is that, at 0.1 significance level, the ∆ test are almost
always more powerful than the classical tests. There is only one test that has a
relatively close power against these alternatives, and it is the Bowman-Shenton K2

test. However, there is one exception to this domination of the moments and semi–
moments tests, the Anderson-Darling A2 test has the best power against a t2. It is
not entirely important, since this distribution is the farther away from the Gaussian
in our sample and all the tests are quite powerful against it.

As in the case of the asymmetric-leptokurtic alternatives, the ∆ tests are not as
powerful at 0.05 as at 0.1. Again, this comes from a tendency to deflation at this
confidence level, a tendency that is still present, but not as important, at 0.1.

An other striking point is that, as expected, the ∆3 test has powers that are quite
close to those of ∆1 and ∆2. Indeed, it sometimes even is the most powerful test.
Moreover, the ∆1 and ∆2 seem to have, as expected from construction and from the
sensitivity surface analysis, a clearly identical power.

4.2.3. Asymmetric-Platykurtic Alternatives. Clearly, moments, or semi–moments ba-
sed tests perform poorly against platykurtic alternatives. In the case of asymmetric-
platykurtic distributions, the feature that permits to these tests to have a limited
power is the skewness. The higher the skewness, the closer their power is to the
power of the other classes of tests. It is to notice, however, that the ∆ tests perform
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consistently better than the K2. This is probably caused by their higher sensitivity
to asymmetries. In this case again, ∆3 has considerably less power than the other ∆
tests, thus making it by far the least powerful test of our study against asymmetric-
platykurtic alternative.

4.2.4. Symmetric-Platykurtic Alternatives. In this case of platykurtosis, there is no
asymmetry to save the moments based tests. However, K2 has far more power than
the ∆ tests in these cases especially for larger samples, and seems to be more suited
to detect departure from normality in terms of peakedness.

5. The Normality of Stock Returns at Different Horizons

One of the key stylised facts about stock returns is that they are generally not
normally distributed at short horizons and tend to normality as the observation period
increases. However, the details of such a tendency towards normality are yet to be
studied. We propose to evaluate both the speed of convergence towards normality
for asset returns as the length of time over which they are computed increases and
the specifics of such a convergence, notably in terms of semi–moments, as our tests
permit us to do.

5.1. The Data. In order to study the evolution of the distribution of stock returns,
we selected 239 stocks listed in the Standard and Poor’s 500 index. These stocks
were selected for two reasons : they are relatively liquid, in the sense that their prices
changed in at least 88% of the quotation days during the selected period, and these
stocks have been quoted at least since 1984.

This selection of sample induces a double bias : first a survivorship bias, the
distribution of returns might be different for the stock of companies unlisted or which
went bankrupt. However, in this case, we needed a sample of the same number of
observation for every stock, in order to have the same confidence level for all stocks.
The second bias is that thinly traded stock may have a different behaviour in terms
of distribution. Again, we could not include such stocks since thin trading hides some
of the evolutions of the price.

We thus obtained 4293 daily quotes for each stock, from January, 1st, 1985 to
December, 31st, 2001. From these, we constructed daily log returns. The choice of
the log returns comes from the fact that these returns allow us to easily construct
returns for longer periods. Indeed, such returns, handy as they are, constitute an
approximation that only holds in the neighbourhood of zero. More extreme returns
are amplified.

From the original daily observations, we constructed the returns on longer periods
of time, ranging from 5 days to 90 days, with a 5 days step. The limit of 90 days was
selected so as to maintain a sufficient number of observations (the number of returns
per stock in the case of the 90 days returns is 47). Moreover, it is common practice to
consider returns on more than three months to be Gaussians, therefore this horizon
should represent a sufficient limit. Here, a precision seems to be needed. The time
horizons used in our study are not calendar time lengths but quoting days. When we
mention a 60 days time horizon, we do not speak of roughly two months of real time
but of a span close to three calendar months. We believe that the influence of time
scale on the distribution of returns is somehow linked to the information revealed
and thus our choice of length measure seems more appropriate in some ways than
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the calendar time. However, a measure in terms of volumes of transactions might yet
improve the results.

The 18 additional returns horizons allow us to evaluate quite precisely the evo-
lution of their distribution towards normality. However, it is quite clear that such
a methodology has a few drawbacks. Indeed, the selected horizons correspond to a
certain number of actual trading days, and therefore the length of calendar time over
which the returns are evaluated is not exactly constant. This variability exists from
one observation to another, and more so at certain horizons.

5.2. Evolution towards Normality. The first possible analysis of the evolution
towards normality of the distributions of returns comes from the actual results of a
test of normality. Indeed, we can analyse the proportion of stocks for which the test
rejects normality. This would lead to a general understanding of the evolution of the
distributions, as the indicator would be a mean taken across the different stocks of the
sample. To test for normality, in the following sections, we use the ∆2 test, presented
before.

The results presented in table 7 are, indeed, concordant with our expectations.
There is an overall decrease in the proportion of stocks for which distributions nor-
mality is rejected as the length of the returns’ period increases. However, the decrease
is not continuous, indicating that for certain stocks, the hypothesis of normally dis-
tributed returns is rejected for a given horizon while the test fails to reject it at some
shorter horizons.

Table 7. Proportion of rejection of normality at 5%, by horizon

5 days 10 days 15 days 20 days 25 days 30 days 35 days 40 days
1.0000 0.9749 0.8661 0.8577 0.7824 0.6820 0.7071 0.6234

45 days 50 days 55 days 60 days 65 days 70 days 75 days 80 days
0.5105 0.5397 0.7113 0.5356 0.5188 0.3724 0.4435 0.3682

85 days 90 days
0.3808 0.2259

Clearly, this first approach tells us that the “convergence” towards normality of
the returns’ distributions is not the effect of calendar time alone. Indeed, there are
probably matters of information being integrated into the price at different speeds.

To obtain a more precise image of the evolution of these distributions, we propose to
use an other indicator of normality. Indeed, the results of the test are a simple binary
response : either the test rejects normality or it fails to do so. A more defined picture
of the situation could be obtained by analysing the level of the test statistic. Such a
method would provide us with more details as to the degree of rejection. However,
as the number of observations differs for the different horizons, the confidence level
of our estimator will not be constant, implying that comparisons regarding normality
are more delicate.

However, to smooth the results, we consider the average values of the statistic over
the 239 stocks of the sample. The results are presented in table 8. We need to keep in
mind while looking at these results that, if the statistics themselves are comparable,
their indications about the normality of the data varies.
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Table 8. Average level of the ∆2 statistic, by horizon

5 days 10 days 15 days 20 days 25 days 30 days 35 days 40 days
13140 2059.2 820.84 297.93 223.14 138.92 132.12 71.585

45 days 50 days 55 days 60 days 65 days 70 days 75 days 80 days
53.189 81.379 46.51 47.469 31.236 43.869 35.795 25.128

85 days 90 days
27.315 11.646

The speed at which the mean ∆2 statistic for the returns converges to zero (its
level for a large Gaussian sample) is quite important for the first few horizons, then
it slows quite a lot. This can be well observed on graph 5.
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Figure 5. Convergence of the mean ∆2 statistics

Our impression in front of such a graph as 5(a) is that the speed convergence is
of a logarithmic type. Simply using a log-scale for the graph (as in 5(b)) indicates
that the speed is still a bit higher for small values. This leads us to what we call the
“log-log” hypothesis. Indeed, the logarithm of the statistic may be linearly related to
the logarithm of the number of days in the returns period. To test for this hypothesis,
we use a simple Ordinary Least-Squares regression. The results, shown in table 9 and
graph 6, seem to confirm the hypothesis.

The “log-log” hypothesis we formulate for the speed of convergence towards nor-
mality can be written in the following way:

(5.1) ln (∆2) = α+ β ln (d) + ε,

where d is the length (in quotation days) of the period over which returns are com-
puted. The question that remains is: does this equation represents the general speed
of convergence to normality, and are the coefficients α and β constant, or do they
vary across stocks and markets.
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Table 9. Speed of convergence for the log of ∆2 statistics

Ordinary Least-Squares Estimates
R-squared = 0.9742
Rbar-squared = 0.9726
σ2

e = 0.0842
Durbin-Watson = 1.5188
Variable Coefficient t-statistic t-probability
Constant 12.546623 38.484845 0.000000
lnn -2.156534 -24.568006 0.000000
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Figure 6. Results of the OLS regression for the convergence of ∆2

Applying the same estimation to individual stocks is less conclusive. The average
level of the R2 is 63.05%, while the average level of the coefficients is 9.63 for the
constant and -1.976 for the coefficient of the log number of days, not varying strongly
across stocks and being closer to the results obtained on the general regression when
the R2 is high. However, only a limited number of stocks presents a small R2 and on
the 239 stocks of the sample, only 102 exhibit a R2 less than or equal to 60%.

On the other hand, only for 21 stocks is the R2 greater than or equal to 90%.
This might be explained by two effects. First, it is possible that for less liquid stocks
(they present the lowest R2) quotation days are not an appropriate measure of the
diffusion of information. Second, the limited number of observations probably makes
our estimation of the level of normality at certain horizons quite noisy, especially for
longer horizons which imply a more limited number of observations.

Confirming the “log-log” hypothesis and the level of the parameters can probably
be done by testing out of sample, on a sample with more observations, and perhaps
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based on actual calendar days or number of trades and not only quotation days. We
plan to further our study in this direction in a near future.

5.3. Details of the Evolution Towards Normality. As we pointed out in the
introduction, the goal of a test of normality is not only to reject or fail to reject the
null hypothesis, but also to provide additional informations on the deviations from
normality so as to enable the researcher to tackle the distributional properties of the
sample.

Indeed, the tests of normality we proposed, and mostly ∆2, which is most appro-
priate against the distributions commonly found in economics and finance, are based
on semi–moments, which permit a closer inspection of the sources of non-normal be-
haviour. We will now use them, as well as classical moments to study the details of
the evolution towards normality of the returns’ distributions.

The estimators of the first moments of the distributions, averaged over the 239
stocks, are presented in table 10. The mean and the variance, not reported here as
they are not related to normality, increase with the length of the period, as expected.
The mean 5 days mean return is 0.0022368, while for the 90 days return it is 0.038415.
The mean 5 days returns variance is 0.045763, at the 90 days horizon, it is 0.17434.

Table 10. Mean moments of the stock returns’ distribution

horizon skewness left skew. right skew. kurtosis left kurt. right kurt.

5 days -0.52928 -1.4157 0.88731 9.6447 7.2852 2.3371
10 days -0.51122 -1.3283 0.8189 7.5243 5.5302 1.959
15 days -0.44815 -1.2421 0.79625 6.3442 4.4743 1.8255
20 days -0.49331 -1.25 0.76017 5.902 4.2041 1.6429
25 days -0.55235 -1.2673 0.71975 5.7234 4.1568 1.4999
30 days -0.47949 -1.2001 0.72564 5.2261 3.6663 1.487
35 days -0.59332 -1.2346 0.64858 5.0147 3.7281 1.2047
40 days -0.5416 -1.2019 0.66789 4.7951 3.4246 1.2814
45 days -0.49064 -1.1393 0.65641 4.3486 3.059 1.1985
50 days -0.57244 -1.1939 0.63156 4.6043 3.3679 1.1287
55 days -0.69934 -1.2888 0.60288 4.9657 3.7763 1.0629
60 days -0.56739 -1.1899 0.6345 4.5106 3.2293 1.1551
65 days -0.58779 -1.1864 0.61189 4.3803 3.1633 1.0853
70 days -0.47656 -1.108 0.64316 4.1887 2.9043 1.1482
75 days -0.55389 -1.1521 0.61271 4.2168 3.0128 1.0574
80 days -0.54917 -1.1534 0.61966 4.2563 2.9968 1.1005
85 days -0.52141 -1.1277 0.62186 4.1368 2.8556 1.1175
90 days -0.37971 -1.0111 0.64345 3.6165 2.3378 1.1265

The first striking fact about these mean moments is that skewness fluctuates a
bit, yet does not clearly change. On the other hand, the components of this third
central moment are evolving. The left semi–skewness increases while the right semi–
skewness decreases in the same proportion. The Gaussian level for the left and right
semi–skewness is −

√
2/π ≈ −0.7979 and

√
2/π ≈ 0.7979, respectively. It is striking

that the right skewness seems to decrease to the Gaussian level and then keeps on
decreasing, opposing the common idea of a general convergence of the distribution of
returns to normality.

Even more interesting is the case of kurtosis. The classical kurtosis decreases
quite fast initially and then more slowly. However, it remains over 3, the Gaussian
level. The semi–kurtosis bring much more information. Indeed, the left semi–kurtosis
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represents the major part of the total kurtosis, and decreases, again, fast for the
first steps, then much slower. This left semi–kurtosis, corresponding to the thickness
of the left tail of the distribution (the probability of extremely negative returns) is
a key dimension of the risk. Indeed, risk adverse investors should be adverse to
kurtosis, and more so to the left semi–kurtosis. Moreover, Tibiletti (2002) shows that
semi–moments constitute coherent measures of risk. The Gaussian level of the left
semi–kurtosis is 3/2 (as it is for the right semi–kurtosis). We easily see that the left
semi–kurtosis remains largely above such a level.

On the other hand, the right semi–kurtosis has a more surprising behaviour. It
starts at a rather high level, indicating leptokurtosis, then decreases. However, its
decrease is not converging towards the Gaussian level but goes beyond. Indeed, stock
returns, thought they are on average leptokurtic, do present a right platykurtosis (the
probability of extreme positive events is less than in the Gaussian case).

Analysing both pairs of semi–moments leads us to the conclusion that the distri-
bution towards which the returns’ distribution converges is only apparently normal.
Indeed, it seems to be an asymmetric distribution, with a thick left tail and a thin
right tail. This constitutes quite a bad news, as most finance practitioners, when
aware of the problems of normality, think that for periods longer than three months,
returns are Gaussian. Of course, some of the individual stocks in the sample seem to
converge to gaussianity (and the average distribution is closer to normality at long
horizons than at short ones), yet the average moments presented in table 10, give a
quite faithful image of the individual moments and semi–moments of the stocks in
our sample.

Table 11. Speed of convergence for the log of kurtosis statistics

Ordinary Least-Squares Estimates
R-squared = 0.9608
Rbar-squared = 0.9583
σ2

e = 0.0024
Durbin-Watson = 1.3154
Variable Coefficient t-statistic t-probability
Constant 2.685151 48.611986 0.000000
lnn -0.294328 -19.790533 0.000000

The speed of evolution of the estimators of moments, again seems, for most of them,
to follow the “log-log” hypothesis. Indeed, for the average moments, the equation 5.1
holds well, with the moments or semi–moments in place of ∆2. The coefficients,
however, are quite different.As could be expected from the first analysis we carried,
the model does not hold for the skewness. It has a correct R2 of 69.78% for the
right semi–skewness, while the coefficient of determination is above 92% for the right
semi–skewness, kurtosis, left semi–kurtosis and right semi–kurtosis. The results of this
regression are given in table 11, while the results of the regressions for semi–moments
are summarised in table 12 .

These results provide important information for practitioners, as they allow in-
vestment analysts to forecast the evolution of the distribution of the returns on their
investments as they modify their holding period. Such information should proba-
bly be included in a pricing model or portfolio selection model as the evolution of
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Table 12. summary of the regressions to evaluate the log-log model
for semi–moments

log of : left skew. right skew. left kur. right kur.
R-squared 0.6978 0.9253 0.9399 0.9249
Rbar-squared 0.6789 0.9200 0.9362 0.9202
σ2

e 0.0018 0.0012 0.0036 0.0056
Durbin-Watson 1.4358 1.4271 1.2885 1.4152
constant 0.466732 0.109723 1.322742 2.433220
lnn -0.077892 -0.136785 -0.288292 -0.317395

the distribution for different returns periods possibly imply the selection of different
portfolios depending on the intended investment horizon.

6. Concluding Remarks

The use of semi–moments in estimating the normality of distributions has led us to
the construction of goodness-of-fit tests of normality based on these semi–moments.
We estimated their critical values at different confidence levels and for different sample
sizes through simulations.

These tests come in three different flavours: one of it is more powerful against
negatively asymmetric alternatives, the second one is more powerful against posi-
tively asymmetric alternatives and the third one is more general. The tests of power
conducted showed us that the first two tests perform extremely well against both
symmetric and leptokurtic alternatives, being each more powerful against the type
of asymmetries it was designed to handle yet retaining important power against the
other asymmetries. The third test proved less interesting, not generally yielding im-
provement to the others and to existing tests of normality.

The ∆1 and ∆2 tests were found more powerful than the existing tests at detecting
asymmetries especially in presence of leptokurtosis. However, they had difficulties
detecting platykurtosis and more so in smaller samples. The results of our power
tests show that the best omnibus test is still to be found between the Anderson-
Darling A2 test (modified by Stephens (1974)) and the Royston (1993b) version of
the Shapiro-Wilks W test. However, in many fields most of the distributions are both
asymmetric and leptokurtic, alternatives against which the semi–moments tests of
normality are the most powerful tests. The presence of fat tails and asymmetries is
particularly notable in financial returns and thus justifies the use of ∆1 and ∆2 in
this field of empirical research.

Indeed, in many fields, normality in itself is not the issue, the normality of only
one half of the distribution is required. For example, in studying a phenomenon
significant only for negative values. More precisely, if as many economists advocates
it, investors are only concerned with losses or sub-expected returns, the distributions
of returns may not be normal but this is not important if the part of it below its
mean closely ressembles that of a Gaussian.

In applying our ∆2 test to stock returns, we have shown that their distributions do
indeed evolve over time towards resembling more a Gaussian. Moreover, this speed of
this evolution was determined to be of a “log-log” type, providing practitioners with
a mean to forecast the evolution of the distribution when they change their investing
or holding horizon. This speed of evolution is also found to describe most of the
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moments and semi–moments finance is concerned with. However, the evolution of
both the right semi–skewness and right semi–kurtosis imply that the distributions of
returns do not, in fact, tend to real Gaussians.
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Appendix A. Estimation of the Variance of the Semi–Moments

The distribution of the estimators of both the semi–skewness and both the semi–
kurtosis, although still unknown have the same variance and this variance is, for
Gaussian samples, a polynomial in 1/n, with n the sample size. We estimated these
variances by linear regressions on the results of 100 000 Monte Carlo simulations for
34 sample sizes. The precision of the estimation was increased by simultaneously
taking into account the estimators of the right and left semi–moments.

Table 13. Joint semi–skewness variance

Ordinary Least-Squares Estimates
R-squared = 1.0000
Rbar-squared = 1.0000
σ2

e = 0.0000
Durbin-Watson = 2.4562
Variable Coefficient t-statistic t-probability
1/n 1.743795 899.694191 0.000000
1/n2 -10.062152 -170.689160 0.000000

Table 14. Joint semi–kurtosis variance

Ordinary Least-Squares Estimates
R-squared = 0.9998
Rbar-squared = 0.9998
σ2

e = 0.0000
Durbin-Watson = 1.8735
Variable Coefficient t-statistic t-probability
1/n 21.558373 450.424619 0.000000
1/n2 -209.049576 -143.605448 0.000000
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Appendix B. Detailed Percentage Points of the ∆ Statistics

Table 15. Percentage points of the distribution of ∆1

sample Confidence Levels (∆1)
size 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001

25 2.5860 3.3347 4.6210 7.4369 11.1187 17.5347 23.7369 40.3180
50 2.6633 3.4104 4.5707 7.1009 10.3100 15.9821 21.4919 39.4102
75 2.7630 3.4913 4.6714 7.1884 10.1869 15.3459 20.3122 36.7530
100 2.8178 3.5546 4.6726 6.9474 9.7999 14.5279 19.1375 34.0987
125 2.8399 3.5614 4.7286 6.9151 9.4674 14.1611 18.4138 33.0372
150 2.9217 3.6100 4.7236 6.9558 9.5413 13.8505 17.7157 29.5374
175 2.9238 3.6400 4.7529 6.9298 9.4082 13.6847 17.7643 32.8185
200 2.9428 3.6473 4.7561 6.8762 9.5204 13.5982 17.8019 29.3939
225 2.9835 3.7177 4.8036 6.9659 9.4552 13.5124 17.2969 28.5735
250 2.9744 3.6933 4.8042 6.9339 9.5498 13.3710 16.3059 26.4350
275 2.9942 3.7030 4.8234 6.9232 9.3140 12.9555 16.3827 26.6910
300 2.9783 3.6766 4.7588 6.7714 9.1033 12.8632 16.1282 26.2977
325 2.9840 3.6784 4.7465 6.7625 8.9891 12.8210 15.7641 25.4076
350 3.0069 3.7015 4.7890 6.8673 9.2160 12.9741 16.6181 26.5715
375 3.0510 3.7689 4.8958 6.9837 9.3199 12.8663 15.8456 24.2661
400 3.0331 3.7263 4.8136 6.7675 9.0163 12.6378 15.8408 23.9371
425 3.0759 3.7923 4.8802 6.9460 9.2730 12.6696 15.6804 24.1399
450 3.0637 3.7815 4.8213 6.8959 8.9889 12.5402 15.2889 23.6060
475 3.0106 3.6913 4.7359 6.6924 8.8440 12.0947 14.7468 21.8206
500 3.0833 3.7890 4.8417 6.8699 9.0618 12.2753 15.3635 25.2615
600 3.0534 3.7552 4.8154 6.7649 8.9464 12.1421 14.7296 22.0635
700 3.1058 3.7849 4.8353 6.8395 9.0128 12.1820 15.0440 22.5222
800 3.0956 3.7587 4.7998 6.8008 8.7911 11.8771 14.2265 22.1190
900 3.0891 3.7633 4.8453 6.8121 8.8763 12.1256 14.6336 21.1512
1000 3.1359 3.8159 4.8489 6.7446 8.8277 11.7667 14.3612 22.0249
2000 3.1494 3.8508 4.8574 6.6965 8.8314 11.7369 14.0996 20.5451
3000 3.1924 3.8745 4.8781 6.6875 8.5610 11.3406 13.4696 18.3021
4000 3.1632 3.8593 4.8329 6.6698 8.6775 11.4369 13.5429 18.5359
5000 3.1884 3.8566 4.8602 6.6731 8.5529 11.2425 13.5729 18.6675
6000 3.1970 3.8874 4.8734 6.7085 8.6482 11.3030 13.2727 18.0659
7000 3.1527 3.8203 4.8190 6.6278 8.5136 11.0248 12.9509 18.5266
8000 3.1574 3.8529 4.8437 6.7532 8.6668 11.3266 13.1849 17.6968
9000 3.1699 3.8579 4.8693 6.7249 8.6977 11.3187 13.2613 17.8795
10000 3.1582 3.8468 4.8780 6.6595 8.5900 11.0104 12.7648 18.0180
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Table 16. Percentage points of the distribution of ∆2

sample Confidence Levels (∆2)
size 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001

25 2.6050 3.3547 4.5963 7.4030 11.1573 17.4214 23.1066 43.1937
50 2.6658 3.3952 4.5744 7.0782 10.2906 15.8581 21.7465 41.5505
75 2.7565 3.4757 4.6475 7.1586 10.1378 15.4407 20.8761 39.9846
100 2.8129 3.5454 4.6754 7.0189 9.7665 14.2651 18.9436 31.9495
125 2.8417 3.5682 4.6958 6.8814 9.5681 14.0726 18.1886 32.6232
150 2.9342 3.6260 4.7287 6.8931 9.5212 13.8594 17.7403 29.9134
175 2.9176 3.6133 4.7461 6.9610 9.6285 13.8271 17.9156 32.3932
200 2.9381 3.6442 4.7200 6.8137 9.4696 13.7408 17.4793 29.1355
225 2.9818 3.7138 4.7747 6.9638 9.3607 13.5670 17.0663 26.6660
250 2.9848 3.6849 4.7957 6.9735 9.4567 13.0405 16.5189 27.2613
275 2.9937 3.7053 4.8145 6.9650 9.2539 12.7815 16.1093 24.4746
300 2.9700 3.6811 4.7352 6.8062 9.1769 12.8667 15.8667 24.2779
325 2.9780 3.6768 4.7551 6.7712 8.9643 13.0106 16.1122 26.0845
350 3.0007 3.7211 4.7828 6.8250 9.1978 12.8804 16.4489 26.9597
375 3.0680 3.7879 4.8572 7.0080 9.3145 13.0655 16.1224 25.6955
400 3.0281 3.7463 4.8181 6.8474 9.0028 12.2913 15.5131 23.6245
425 3.0585 3.7963 4.8989 6.9862 9.2138 12.7418 15.7763 24.9512
450 3.0639 3.7649 4.8656 6.8733 9.0246 12.4052 15.2599 25.2040
475 3.0063 3.7156 4.7354 6.6420 8.8145 12.1115 15.0627 22.8146
500 3.0892 3.7634 4.8131 6.8358 9.1231 12.4003 15.3754 23.5589
600 3.0450 3.7666 4.7987 6.8068 8.9468 12.0436 14.7924 22.1619
700 3.0845 3.7916 4.8296 6.8032 8.8905 12.1303 15.3605 23.0547
800 3.0765 3.7634 4.8164 6.7733 8.7573 11.8380 14.2312 21.3776
900 3.0792 3.7768 4.8298 6.7781 8.9511 12.0770 14.8505 22.9247
1000 3.1108 3.8139 4.8568 6.7187 8.7672 11.7696 14.2845 20.7197
2000 3.1410 3.8423 4.8664 6.6945 8.7790 11.6582 13.9541 20.3583
3000 3.1891 3.8671 4.8629 6.6485 8.6945 11.1820 13.4412 18.8296
4000 3.1576 3.8396 4.8464 6.6908 8.7834 11.6207 13.5986 18.8851
5000 3.1884 3.8485 4.8415 6.6460 8.5514 11.2946 13.5171 19.5563
6000 3.1861 3.8856 4.8804 6.6855 8.5992 11.2016 13.2766 18.2487
7000 3.1462 3.8109 4.8300 6.6531 8.4715 11.1036 12.9629 18.2625
8000 3.1467 3.8337 4.8551 6.7214 8.6662 11.2935 13.5073 18.1054
9000 3.1658 3.8561 4.9123 6.7223 8.6311 11.2713 12.9450 17.7985
10000 3.1737 3.8531 4.8322 6.6371 8.5697 11.1888 13.2231 17.6398
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Table 17. Percentage points of the distribution of ∆3

Confidence Levels
sample size 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001

25 3.1935 4.5256 6.7692 12.1857 19.0634 31.8223 41.9733 78.1272
50 3.1777 4.4377 6.6137 11.1382 17.1549 28.0070 38.2603 71.3414
75 3.2813 4.4962 6.6013 11.0275 16.7108 26.5282 36.3657 64.9030
100 3.3338 4.5160 6.4754 10.6383 15.7954 25.0846 32.1906 57.3123
125 3.3020 4.4455 6.3945 10.3929 15.0275 23.8097 31.0722 53.4788
150 3.3727 4.5345 6.4306 10.2971 15.0628 23.0367 29.5584 51.2982
175 3.3682 4.5609 6.3969 10.2049 14.8309 22.6984 30.0527 54.5842
200 3.3449 4.4665 6.2874 10.0603 14.7165 22.6283 29.5158 52.2279
225 3.3919 4.5403 6.3630 10.0336 14.5195 21.9935 28.1860 45.0961
250 3.4230 4.5159 6.3430 10.1040 14.5024 21.0188 27.3957 44.6579
275 3.3912 4.5242 6.3249 9.8256 13.9931 20.8443 26.4470 41.9150
300 3.3731 4.4729 6.2255 9.6553 13.7991 20.3080 25.9205 43.3899
325 3.3792 4.4756 6.2121 9.5541 13.4395 19.9570 25.4475 43.6572
350 3.3948 4.5000 6.1731 9.6111 13.6919 20.3318 26.6943 45.0672
375 3.4574 4.5150 6.2848 9.8715 14.0439 20.1289 25.7969 40.7093
400 3.3936 4.5002 6.1836 9.4670 13.2310 19.0535 24.5229 39.2535
425 3.4172 4.5060 6.2034 9.5124 13.5633 19.5182 25.0405 41.5043
450 3.4048 4.5128 6.2611 9.5032 13.1813 19.0887 24.2048 39.1294
475 3.3435 4.4195 6.0699 9.2995 12.8805 18.4658 23.3001 35.5909
500 3.3955 4.4892 6.2152 9.4247 13.2461 18.7645 23.7978 39.2705
600 3.3584 4.3962 6.0473 9.2364 12.8461 18.3072 22.6187 34.8925
700 3.4328 4.4582 6.0936 9.1910 12.5977 18.1375 22.7198 36.0858
800 3.3779 4.4027 5.9695 9.0035 12.2217 17.1932 21.3698 34.1306
900 3.3848 4.4018 5.9553 9.0280 12.4061 17.5553 21.9064 34.0511
1000 3.3933 4.4437 6.0026 8.9144 12.1760 17.3116 21.0481 32.7229
2000 3.3773 4.3705 5.7865 8.6229 11.6550 16.0253 19.7226 28.2308
3000 3.4561 4.4158 5.8202 8.4157 11.2803 15.0918 18.2819 26.6123
4000 3.3346 4.2730 5.7096 8.3806 11.1277 15.4032 18.7630 27.1330
5000 3.3931 4.3236 5.7419 8.3262 11.0594 14.9927 18.0884 27.5194
6000 3.3959 4.3217 5.7256 8.2645 10.7938 14.5022 17.4324 24.9720
7000 3.3096 4.2534 5.6234 8.2073 10.7264 14.2188 16.8695 23.5062
8000 3.3599 4.2755 5.6482 8.1808 10.8273 14.6689 17.4870 24.1832
9000 3.3612 4.2593 5.6926 8.0974 10.7713 14.4236 17.0406 23.4841
10000 3.3353 4.2301 5.5856 8.0521 10.7443 14.1910 16.9329 23.0113
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Appendix C. Detailed Power Comparisons

In this section of the annex, we present the detailed results of the power tests, for
samples of size 25, 50 and 100, at significance levels of 0.05 and 0.1. The results already
presented in table 5 and table 6 are not repeated. Again, the subscripts indicate the
significance of the differences in powers. They are obtained by the Cochran’s Q test
and the McNemar test, as indicated in the text. The most powerful tests for a given
distribution at a given size and significance level are subscripted. The subscripts are
omitted when we cannot reject that all tests have the same power.

Table 18. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.05 and n = 25, Symmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group I. Symmetric-Leptokurtic
N (0, 1) 0.0370 0.0382 0.0278 0.0396 0.0492 0.0521 0.05881

t10 0.11584 0.11544 0.0972 0.0796 0.10584 0.1022 0.11184

Logistic 0.13662 0.13802 0.1200 0.0956 0.1270 0.1096 0.1232
SC(0.05, 3) 0.24882 0.25002 0.2288 0.2110 0.2042 0.1913 0.2154
SC(0.1, 3) 0.35242 0.35522 0.3338 0.3124 0.3064 0.2938 0.3056
t4 0.29302 0.29082 0.2726 0.2456 0.2678 0.2501 0.2470
SC(0.05, 5) 0.44062 0.44082 0.4284 0.4150 0.4092 0.3742 0.4192
SC(0.1, 5) 0.62322 0.62482 0.6032 0.6012 0.6072 0.5410 0.6040
t2 0.5774 0.5774 0.5510 0.5406 0.61481 0.5549 0.5586

Group II. Symmetric-Platykurtic
U(0, 1) 0.0010 0.0010 0.0004 0.0002 0.25761 0.1571 0.1558
Beta(1.25,1.25) 0.0008 0.0008 0.0002 0 0.16941 0.0861 0.0852
Beta(1.5,1.5) 0.0016 0.0014 0.0006 0.0004 0.11001 0.0527 0.0518
Beta(2,2) 0.0012 0.0012 0.0006 0.0004 0.07081 0.0359 0.0368

Table 19. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.05 and n = 25, Asymmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group III. Asymmetric-Leptokurtic
Weibull(2) 0.1416 0.1060 0.1030 0.0674 0.16801 0.1238 0.1234
LC(0.10, 2) 0.0960 0.0774 0.0764 0.0462 0.10701 0.0871 0.0882
LC(0.20, 6) 0.5744 0.5658 0.4254 0.4180 0.99261 0.6494 0.9876
χ2

10 0.2562 0.2142 0.2074 0.1534 0.27381 0.2360 0.2294
LC(0.10, 6) 0.8734 0.8680 0.8218 0.8036 0.9032 0.8921 0.91021

LC(0.05, 6) 0.72181 0.7154 0.7066 0.6924 0.6916 0.6800 0.7088
χ2

2 0.7108 0.6746 0.6020 0.5582 0.88721 0.8349 0.8670
χ2

1 0.9114 0.8882 0.8242 0.8142 0.99421 0.9704 0.9930
Weibull(0.5) 0.9842 0.9756 0.9516 0.9540 1.00002 0.9878 1.00002

Lognormal(0,10) 0.8928 0.8732 0.8298 0.8092 0.96161 0.9302 0.9532

Group IV.Asymmetric-Platykurtic
Beta(3,2) 0.0112 0.0178 0.0058 0.0052 0.09201 0.0453 0.0464
Beta(2,1) 0.0508 0.0684 0.0206 0.0200 0.37381 0.2630 0.2740
Beta(2.5,1) 0.1318 0.1706 0.0692 0.0680 0.47881 0.3951 0.3862
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Table 20. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.10 and n = 25, Symmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group I. Symmetric-Leptokurtic
N (0, 1) 0.0800 0.0852 0.0616 0.0806 0.10262 0.0998 0.10242

t10 0.18263 0.17983 0.1640 0.1040 0.17523 0.1564 0.1680
Logistic 0.21123 0.21243 0.1906 0.1276 0.20363 0.1603 0.1896
SC(0.05, 3) 0.31242 0.31362 0.2992 0.2384 0.2828 0.2591 0.2778
SC(0.1, 3) 0.43002 0.42902 0.4144 0.3492 0.3886 0.3310 0.3798
t4 0.37362 0.37862 0.3578 0.2818 0.3562 0.3058 0.3286
SC(0.05, 5) 0.49102 0.49222 0.4776 0.4366 0.4716 0.3988 0.4670
SC(0.1, 5) 0.68342 0.68522 0.6752 0.6304 0.6636 0.6174 0.6534
t2 0.6550 0.6596 0.6392 0.5822 0.68621 0.6102 0.6210

Group II. Symmetric-Platykurtic
U(0, 1) 0.0068 0.0066 0.0020 0.0008 0.39981 0.2784 0.2896
Beta(1.25,1.25) 0.0024 0.0028 0.0008 0.0004 0.28421 0.1621 0.1700
Beta(1.5,1.5) 0.0068 0.0070 0.0028 0.0004 0.21221 0.1182 0.1202
Beta(2,2) 0.0056 0.0070 0.0026 0.0006 0.14501 0.0764 0.0838

Table 21. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.10 and n = 25, Asymmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group III. Asymmetric-Leptokurtic
Weibull(2) 0.2362 0.2008 0.1746 0.0966 0.26281 0.2118 0.2040
LC(0.10, 2) 0.17282 0.1446 0.1388 0.0706 0.17742 0.1404 0.1510
LC(0.20, 6) 0.8318 0.7500 0.5806 0.5724 0.99481 0.9282 0.9930
χ2

10 0.37202 0.3412 0.3052 0.1992 0.38302 0.3266 0.3234
LC(0.10, 6) 0.92283 0.9148 0.8840 0.8672 0.92183 0.8944 0.92383

LC(0.05, 6) 0.74521 0.7414 0.7368 0.7126 0.7300 0.6892 0.7398
χ2

2 0.8442 0.8072 0.7210 0.6536 0.93881 0.9050 0.9252
χ2

1 0.9732 0.9554 0.9042 0.8836 0.9970 0.9884 0.99782

Weibull(0.5) 0.9972 0.9924 0.9776 0.9782 1.00002 0.9986 1.00002

Lognormal(0,10) 0.9512 0.9344 0.8904 0.8582 0.98081 0.9650 0.9744

Group IV.Asymmetric-Platykurtic
Beta(3,2) 0.0380 0.0506 0.0210 0.0094 0.17481 0.1108 0.1052
Beta(2,1) 0.1522 0.1902 0.0876 0.0418 0.53101 0.4361 0.4270
Beta(2.5,1) 0.2796 0.3452 0.1972 0.1174 0.61481 0.5374 0.5380
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Table 22. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.05 and n = 50, Symmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group I. Symmetric-Leptokurtic
N (0, 1) 0.0424 0.0432 0.0336 0.0414 0.05502 0.0413 0.05222

t10 0.16722 0.16882 0.1534 0.1546 0.1214 0.0968 0.1310
Logistic 0.20442 0.19822 0.1866 0.1936 0.1540 0.1272 0.1538
SC(0.05, 3) 0.40283 0.40363 0.3940 0.40143 0.2860 0.3088 0.3406
SC(0.1, 3) 0.5846 0.59022 0.5700 0.59642 0.4642 0.4679 0.5216
t4 0.4472 0.4486 0.4308 0.45641 0.4144 0.3563 0.3998
SC(0.05, 5) 0.67504 0.67304 0.67224 0.67624 0.5960 0.6211 0.6412
SC(0.1, 5) 0.8662 0.8664 0.8604 0.87421 0.8230 0.8310 0.8496
t2 0.8238 0.8228 0.8126 0.8490 0.86101 0.8082 0.8290

Group II. Symmetric-Platykurtic
U(0, 1) 0.0011 0.0010 0.0004 0.0002 0.58402 0.5356 0.58402

Beta(1.25,1.25) 0.0008 0.0008 0.0002 0 0.37521 0.3110 0.3190
Beta(1.5,1.5) 0.0016 0.0014 0.0006 0.0004 0.24841 0.1784 0.1810
Beta(2,2) 0.0012 0.0012 0.0007 0.0004 0.13541 0.0752 0.0748

Table 23. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.05 and n = 50, Asymmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group III. Asymmetric-Leptokurtic
Weibull(2) 0.2980 0.2598 0.2154 0.1994 0.31821 0.2706 0.3038
LC(0.10, 2) 0.16941 0.1412 0.1416 0.1132 0.1454 0.1134 0.1244
LC(0.20, 6) 0.9592 0.8870 0.6560 0.9694 1.00002 0.9976 1.00002

χ2
10 0.51641 0.4746 0.4212 0.3984 0.4954 0.4382 0.4890
LC(0.10, 6) 0.99504 0.99384 0.9872 0.99484 0.9890 0.9866 0.99424

LC(0.05, 6) 0.92461 0.9222 0.9226 0.9216 0.8836 0.8824 0.9148
χ2

2 0.9796 0.9684 0.9138 0.9508 0.9978 0.9214 0.99921

χ2
1 0.9998 0.9992 0.9902 0.9994 1.0000 0.9996 1.0000

Weibull(0.5) 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000
Lognormal(0,10) 0.9976 0.9960 0.9880 0.9932 0.99962 0.9894 1.00002

Group IV.Asymmetric-Platykurtic
Beta(3,2) 0.0160 0.0218 0.0042 0.0068 0.17501 0.0987 0.1076
Beta(2,1) 0.1432 0.1936 0.0502 0.0920 0.73381 0.7179 0.7254
Beta(2.5,1) 0.3570 0.4328 0.1882 0.2680 0.8312 0.8316 0.84541
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Table 24. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.05 and n = 100, Symmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group I. Symmetric-Leptokurtic
N (0, 1) 0.0456 0.0458 0.0356 0.0492 0.0478 0.05011 0.0454
t10 0.2400 0.2336 0.2250 0.25961 0.1508 0.1822 0.1764
Logistic 0.3090 0.3120 0.3030 0.35521 0.2400 0.2620 0.2550
SC(0.05, 3) 0.6006 0.5972 0.5958 0.62841 0.4112 0.4746 0.5458
SC(0.1, 3) 0.7966 0.8010 0.7930 0.84101 0.6764 0.7882 0.7632
t4 0.6928 0.6828 0.6816 0.75281 0.6480 0.6440 0.6632
SC(0.05, 5) 0.88062 0.8760 0.8774 0.88342 0.8060 0.8004 0.8604
SC(0.1, 5) 0.98402 0.9828 0.9828 0.98702 0.9696 0.9556 0.9798
t2 0.9742 0.9714 0.9672 0.98682 0.98502 0.9374 0.9810

Group II. Symmetric-Platykurtic
U(0, 1) 0.0024 0.0022 0 0.6832 0.9432 0.9321 0.98661

Beta(1.25,1.25) 0.0008 0.0006 0 0.3406 0.7794 0.6174 0.87961

Beta(1.5,1.5) 0.0010 0.0002 0 0.1474 0.5786 0.5133 0.64881

Beta(2,2) 0.0002 0.0002 0.0002 0.0278 0.29801 0.2044 0.2788

Table 25. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.05 and n = 100, Asymmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group III. Asymmetric-Leptokurtic
Weibull(2) 0.6224 0.5716 0.4068 0.4878 0.5988 0.6194 0.67661

LC(0.10, 2) 0.29221 0.2518 0.2458 0.2184 0.2228 0.1708 0.2024
LC(0.20, 6) 1.00005 0.9992 0.9108 1.00005 1.00005 1.00005 1.00005

χ2
10 0.85721 0.8300 0.7070 0.7754 0.7982 0.7870 0.8474
LC(0.10, 6) 1.0000 1.0000 1.0000 1.0000 0.9998 0.9998 1.0000
LC(0.05, 6) 0.99582 0.9936 0.9952 0.99602 0.9814 0.9872 0.9934
χ2

2 1.00006 0.99986 0.9976 1.00006 1.00006 1.00006 1.00006

χ2
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Weibull(0.5) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Lognormal(0,10) 1.0000 1.0000 0.9998 1.0000 1.0000 1.0000 1.0000

Group IV.Asymmetric-Platykurtic
Beta(3,2) 0.0444 0.0584 0.0078 0.0602 0.3874 0.3035 0.36661

Beta(2,1) 0.5136 0.6724 0.2734 0.7778 0.9810 0.9682 0.99581

Beta(2.5,1) 0.8348 0.9162 0.6532 0.9168 0.99422 0.9856 0.99902
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Table 26. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.10 and n = 100, Symmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group I. Symmetric-Leptokurtic
N (0, 1) 0.0998 0.1010 0.0778 0.0814 0.0988 0.0961 0.0960
t10 0.32761 0.3184 0.3204 0.3082 0.2298 0.2562 0.2482
Logistic 0.41264 0.40864 0.41344 0.40904 0.3396 0.3368 0.3374
SC(0.05, 3) 0.66064 0.66244 0.66184 0.65964 0.4976 0.5360 0.5972
SC(0.1, 3) 0.8454 0.8478 0.8466 0.86261 0.7478 0.7762 0.8060
t4 0.7634 0.7708 0.7708 0.79101 0.7346 0.7240 0.7234
SC(0.05, 5) 0.89924 0.89644 0.89744 0.89504 0.8410 0.8460 0.8788
SC(0.1, 5) 0.98704 0.98664 0.98804 0.98864 0.9760 0.9774 0.9840
t2 0.9818 0.9828 0.9814 0.99002 0.99182 0.9752 0.9874

Group II. Symmetric-Platykurtic
U(0, 1) 0.0844 0.0818 0.0050 0.9482 0.9794 0.9746 0.99741

Beta(1.25,1.25) 0.0268 0.0364 0.0010 0.7912 0.8948 0.9454 0.95101

Beta(1.5,1.5) 0.0150 0.0156 0.0006 0.5536 0.7284 0.79922 0.80041

Beta(2,2) 0.0070 0.0068 0.0004 0.2208 0.45763 0.45103 0.45043

Table 27. Power comparisons of normality tests based on 5000 sam-
ples at α = 0.10 and n = 100, Asymmetric Distributions

distribution ∆1 ∆2 ∆3 K2 A2 W (W ′) W ∗

Group III. Asymmetric-Leptokurtic
Weibull(2) 0.78882 0.7570 0.5564 0.6658 0.7300 0.7650 0.78842

LC(0.10, 2) 0.41141 0.3862 0.3664 0.2976 0.3206 0.2940 0.2846
LC(0.20, 6) 1.00006 1.00006 0.9624 1.00006 1.00006 1.00006 1.00006

χ2
10 0.93541 0.9220 0.8166 0.8760 0.8782 0.8572 0.9070
LC(0.10, 6) 1.00006 1.00006 1.00006 1.00006 0.9998 1.00006 1.00006

LC(0.05, 6) 0.99603 0.9950 0.99603 0.99603 0.9876 0.9924 0.9942
χ2

2 1.00006 1.00006 0.9992 1.00006 1.00006 1.00006 1.00006

χ2
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Weibull(0.5) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Lognormal(0,10) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Group IV.Asymmetric-Platykurtic
Beta(3,2) 0.1626 0.2238 0.0812 0.2682 0.54341 0.5118 0.5256
Beta(2,1) 0.8188 0.9284 0.7410 0.9560 0.9950 0.9944 0.99861

Beta(2.5,1) 0.9662 0.9884 0.9408 0.9884 0.9982 0.9986 0.99981
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